Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Accurate prediction of blasting vibration should be achieved in mine blasting production practice. It is also a critical problem in the field of blasting vibration control technology research. In this research paper, on the basis of the previous research results and taking account into the reflection principle of elastic wave at the free interface, the authours proposes the blasting seismic wave propagation model. In addition, the blasting positive elevation effect are theoretically explained in detail, and the vibration velocity prediction formula of the positive elevation effect is derived. Finally, the positive elevation effect mechanism and the step (positive) formula are calibrated based on the on-site monitoring data of blasting vibration of Qipanjing Jinou coal mine. In beirf, a theoretical basis is laid by this paper for similar blasting projects.
Go to article

Authors and Affiliations

X.J. Zhang
1
H.M. An
2

  1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  2. Kunming University of Science and Technology, Faculty of Public Security and Emergency Management, 650093, Kunming, China
Download PDF Download RIS Download Bibtex

Abstract

Based on Projection Pursuit Regression Theory (PPRT), a projection pursuit regression model has been established for forecasting the peak value of blasting vibration velocity. The model is then used to predict the peak value of blasting vibration velocity in a tunnel excavation blasting in Beijing. In order to train and test the model, 15 sets of measured samples from the tunnel project are used as the input data. It is found that predicting results by projection pursuit regression model on the basis of the input data is much more reasonable than that predicted by the traditional Sodaovsk algorithm and modified Sodaovsk formula. The results show that the average predicting error of the projection pursuit regression model is 6.36%, which is closer to the measured values. Thus, the projection pursuit prediction model is a practical and reasonable tool for forecasting the peak value of blasting vibration velocity.
Go to article

Authors and Affiliations

Jianjun Shi
1
Huaming An
2
ORCID: ORCID
Xin Wei
3

  1. Associate Professor PhD., Eng., Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, China
  2. Lecturer, PhD., Eng., Kunming University of Science and Technology, Faculty of Public Security and Emergency Management, 650093, Kunming, China
  3. Master Studnet., Eng., University of Science and Technology Beijing, School of Civil and Resource Engineering, 650093, 100083, Beijing, China

This page uses 'cookies'. Learn more