Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The deepening and exploration of the loess-palaeosol section at the foot of the Kopasz Hill at Bodrogkeresztúr have been carried out to expand the existing knowledge of the Carpathian foothill palaeoenvironmental factors and their impact. The study deals with particle size analysis, organic matter and carbonate content. For the presentation of age-depth models, the OSL dates of Bodrogkeresztúr (BKT) and the 14C dates of Bodrogkeresztúr, brickyard 1 were used-, and the diagrams of the Accumulation Rates (AR) derived from them. These were compared with Mass Accumulation Rate (MAR) calculations based on OSL and 14C data from BKT and 14C data from Bodrogkeresztúr, brickyard 1. It became evident that there is a significant difference between the two sections, which may be due to the upland position, the overlap, or the wind tunnel effect. Sedimentological studies revealed coarser grain composition, however, the nearly complete absence of coarser sand fraction is also noticeable in the case of BKT. Also, the entire section is characterized by increased carbonate content due to post-sedimentation processes, recarbonization and leaching. The AR and MAR results show the difference between the suitability of different chronometric methods, indicating that the top of both sections may have been redeposited or eroded.
Go to article

Bibliography

1. Bennett, K.D., 1994. Confidence intervals for age estimates and deposition times in late-Quaternary sediment sequences. The Holocene 4, 337–348.
2. Blaauw, M., Christen, A.J., 2011. Flexible palaeoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6 (3), 457–474.
3. Bohn, H.L., McNeal, B.L., O’Connor, G.A., 1985. Talajkémia, Mezőgazdasági Kiadó – Gondolat Kiadó, Budapest, 363 pp.
4. Bokhorst, M.P., Vandenberghe, J., Sümegi, P., Łanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Marković, S.B., Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grainsize records. Quarternary International 234, 62–74.
5. Bösken, J., Obreht, I., Zeeden, C., Klasen, N., Hambach, U., Sümegi, P., Lehmkuhl, F., 2019. High-resolution palaeoclimatic proxy data from the MIS3/2 transition recorded in northeastern Hungarian loess. Quaternary International 502, 95–107.
6. Bronk Ramsey, C., Lee, S., 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon 55 (2–3), 720–730.
7. Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242–248. 8. Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S., 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and palaeoclimate change. Acta Geochimica et Cosmochimica 65, 901–913.
9. Dokuchaev, V.V. , 1879. Chernozem (black earth) of European Russia, Societé Imperiale Libre Économique Trenke & Fusnot, St. Petersburg, 66 pp.
10. Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105–107.
11. Molnár, D., 2015. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével. Doktori disszertáció, Földtudományok Doktori Iskola, Szeged.
12. Molnár, D., Sümegi, P., 2016. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével, In: Unger, J., Pál-Molnár, E. (Eds), Geoszférák 2015, GeoLitera, Szeged, 185–209.
13. Pécsi, M., 1993. Negyedkor és löszkutatás. Akadémia kiadó, Budapest, 375 pp.
14. Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653–667.
15. Rhodes, E.J., 2011. Optically stimulated luminescence dating of sediments over the past 250,000 years”. Annual Review of Earth and Planetary Sciences 39, 461–488.
16. Schatz, A.-K., Zech, M., Buggle, B., Gulyás, S., Hambach, U., Marković, S.B., Sümegi, P., Scholten, T., 2011. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quaternary International 240, 52–61.
17. Schatz, A.-K., Buylaert, J.-P., Murray, A., Stevens, T., Scholten, T., 2012. Establishing a luminescence chronology for a palaeosol-loess profile at Tokaj (Hungary): A comparison of quartz OSL and polymineral IRSL signals. Quaternary Geochronology 10, 68–74.
18. Schatz, A.-K., Scholten, T., Kühn, P., 2015. Palaeoclimate and weathering of the Tokaj (Hungary) loess-palaeosol sequence. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 170–182.
19. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., Spurk, M., 1998. INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 1041–1083.
20. Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., v. d. Plicht, J., Spurk, M., 1998a. INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40, 1041–1083.
21. Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998b. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40, 1127–1151.
22. Sümegi, P., 2005. Loess and Upper Palaeolithic environment in Hungary. Aurea Publishing, Nagykovácsi, 34–46.
23. Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15.000–70.000 BP years. Radiocarbon 40, 855–863.
24. Sümegi, P., Krolopp, E., 2002. Quatermalacological analyses for modeling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quaternary International 91, 53–63.
25. Sümegi, P., Molnár, D., Gulyás, S., Náfrádi, K., Sümegi, B., P., Törőcsik, T., Persaits, G., Molnár, M., Vandenberghe, J., Zhou, L., 2019. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: The loess-palaeosol sequence of Katymár brickyard (Hungary). Quarternary International 504, 40–55.
26. Sümegi, P., Rudner, Z.E., 2001. In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian Basin. Quaternary International 76/77, 165–176.
27. Sümegi, P., Törőcsik, T., Náfrádi, K., Sümegi, B., Majkut, P., Molnár, D., Tapody, R., 2016. Radiocarbon dated complex palaeoecological and geoarcheological analyses at the Bodrogkeresztúr-Henye Gravettian site (NE Hungary). Archeometriai Műhely 2016/XIII./1. 28. Újvári, G., Kovács, J., Varga, Gy., Raucsik, B., Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29 (23), 3157–3166.
29. Újvári, G., Molnár, M., Novothny, Á., Páll-Gergely, B., Kovács, J., Várhegyi, A., 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcso loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable ageedepth models for the last 40 ka. Quaternary Science Reviews 106, 140–154.
30. Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377–392.
Go to article

Authors and Affiliations

László Makó
1 2
Dávid Molnár
1 2
Péter Cseh
1 2
Pál Sümegi
1 2

  1. Department of Geology and Paleontology, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  2. University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes research team, H-6722 Szeged, Egyetem u. 2-6, Hungary

This page uses 'cookies'. Learn more