Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 84
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of road safety regarding barrier placement as relative to the curb. A short summary of existing regulations is presented. Numerical simulations using the explicit finite element system Ls-Dyna are shown. In the analysis, variable distance between the barrier and the curb is assumed. The obtained result reveals that the distance has little impact on the working width of the barrier.

Go to article

Authors and Affiliations

K. Wilde
K. Jamroz
D. Burski
M. Budzyński
S. Burzyński
J. Chróścielewski
W. Witkowski
Download PDF Download RIS Download Bibtex

Abstract

The use of the passivity-based control (PBC) properly fits stability problems related to multilevel converters. Two approaches for

the PBC design have been proposed and will be reviewed in the present paper. Particularly the second is developed by splitting the system into n subsystems and controlling them independently. The partition of the multilevel converter is done on the basis of energy considerations. The main advantage of the second approach is the separate control of the different DC-links and a flexible loading capability.

Go to article

Authors and Affiliations

M. Lissere
Download PDF Download RIS Download Bibtex

Abstract

A finite element (FE) model of the straight guideway bridge under monorail train has been built in this research in order to investigate dynamic interactions of the coupled system in the vertical and longitudinal direction. A limited length of the straddle monorail bridge including five continuous spans is modeled in three dimensions by using FE method. A 3D model of the monorail train system, built in the multibody analyzer MSC ADAMS, is assembled over the bridge. The entire model, consisting of the vehicle and bridge subsystems, is numerically analyzed by performing dynamic simulation in time domain. The braking forces between the train tires and guideway beams are activated in the analysis, in addition to the dead weights of the components and the train live loads. Dynamic forces in the tires are obtained for the case of the emergency braking in the system. The reaction forces, appeared in the bridge piers, are reported as the input forces for the purpose of the bridge design.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Meysam Naeimi
Meisam Tatari
Amin Esmaeilzadeh

Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected aspects of dynamic numerical simulations of an orthotropic steel railway bridge loaded by high-speed trains. The model of moving loads was adopted in accordance with the models set out in the applicable standards. The current European code requirements are referred in which the computer calculations of the dynamic response of the structure are the basis for assessing the suitability of the structure to carry high-speed rail traffic ( v > 160 km/h ). In this research the calculations are based on the author's method of generating traffic roads in Abaqus FEM environment. lt is emphasized in the paper that in most commercial FEM codes (including Abaqus), moving loads are not implemented in modules responsible for defining of loads. The author's approach to this issue allowed to obtain results confirming its adequacy. In the longer term, the authors will develop a plan to adapt this algorithm in order to generale traftic loads on bridges discretized as spatial and plane numerical models.

Go to article

Authors and Affiliations

A. Zbiciak
R. Oleszek
R. Michalczyk
Download PDF Download RIS Download Bibtex

Abstract

On the 14th of February, 2015, a huge fire broke out on Łazienkowski Bridge; a five span bridge, 423 m long and 28 m wide, built in the years 1972-74. It was a fully steel structure with four plate girders and orthotropic deck. The fire started under the first span during the replacement of wooden service decks. The next day, the Department of Bridges of the Warsaw University of Technology was designated to conduct an expertise material investigation, geometrical verification, and FEM model analysis. The subject of this paper concentrates on geometrical issues. The main difficulty of this task was the lack of full reference data regarding the bridge's original structure. The old design was incomplete and there was no actual surveying results for the undamaged structure. As a conclusion, some remarks focused on surveying measurements and on the final decision regarding this bridge are given. It was eventually exchanged into a brand new one and put into public use on the 28th of October, 2015.

Go to article

Authors and Affiliations

H. Zobel
W. Karwowski
M. Wróbel
P. Mossakowski
Download PDF Download RIS Download Bibtex

Abstract

Bridges are particularly vulnerable elements of transport infrastructures. In many cases, bridge structures may be subject to higher volumes of traffic and higher loads as well as more severe environmental conditions than it was designed. Sound procedures to ensure monitoring, quality control, and preventive maintenance systems are therefore vital. The paper presents main challenges and arriving possibilities in management of bridge structures, including: relationships between environment and bridge infrastructure, improvement of diagnostic technologies, advanced modelling of bridges in computer-based management systems, development of knowledge-based expert systems with application of artificial intelligence, applications of technology of Bridge Information Modelling (BrIM) with augmented and virtual reality techniques. Presented activities are focused on monitoring the safety of bridges for lowering the risk of an unexpected collapse significantly as well as on efficient maintenance of bridges as components of transport infrastructure – by means of integrated management systems. The proposed classification of Bridge Management Systems shows the history of creating such systems and indicates the expected directions of their development, taking into account changing challenges and integrating new developing technologies, including automation of decision-making processes.
Go to article

Authors and Affiliations

Jan Bień
1
ORCID: ORCID
Marek Salamak
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Civil Engineering,Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
  2. Silesian University of Technology, Faculty of Civil Engineering, ul. Akademicka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Arch bridges are built since two thousand years at least. Structural materials changed during this time. The design methods were changed also. The biggest impact was noted with development of Finite Element Method and graphical methods of preparation of technical drawings which is strictly combined with development of computers. These processes appeared also in Polish construction industry, especially from the beginning of 90-ties XX century.

But in this paper we do not consider mentioned above problems. We would like to present development of arch bridges from construction technology point of view. This aspect of creation of bridge structures is not very often the subject-matter of analysis. For many investors, design engineers and contractors optimization of structures is most important issue. For most of them the reduction of volume (weight) of structural material is only solution. But sometimes it is not true – the construction technology gives much more efficient results.

We present below examples of realization in Poland medium and large span arch bridges – steel, concrete and hybrid structures.

Go to article

Authors and Affiliations

Tomasz Siwowski
ORCID: ORCID
Henryk Zobel
ORCID: ORCID
Thakaa Al-Khafaji
ORCID: ORCID
Wojciech Karwowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper presents descriptions of bridge disintegration types and contact mass loss in the bridge stage. There is presented Matlab solvers to solve equation describing dynamic changes of temperature in the bridge region. The final result of program calculations is the mass loss and the volume of the metal of contacts which was lost during the bridge stage.

Go to article

Authors and Affiliations

Piotr Borkowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1.1 · 10−6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.

Go to article

Authors and Affiliations

Lizhen Dong
Jianqiang Han
Peng Zhang
Zhengqian Zhao
Bing Cheng
Dong Han
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient

Go to article

Authors and Affiliations

Wojciech Moćko
Download PDF Download RIS Download Bibtex

Abstract

Several previous investigations on failure of a certain type lattice girders railway bridge (on so called BJD line) have not convincingly explained reasons nor have they described potential hazards. This paper attempts to provide an answer, employing static, dynamic, and fatigue analysis of the structure, focusing on previously not analyzed vibrations of elements constituting a lattice node. Detailed models of two types of such nodes – damaged and non- damaged were compared, inside carefully defined limits of applicability.

Go to article

Authors and Affiliations

S. Pradelok
Download PDF Download RIS Download Bibtex

Abstract

Numerical analysis of the tensioning cables anchorage zone of a bridge superstructure is presented in this paper. It aims to identify why severe concrete cracking occurs during the tensioning process in the vicinity of anchor heads. In order to simulate the tensioning, among others, a so-called local numerical model of a section of the bridge superstructure was created in the Abaqus Finite Element Method (FEM) environment. The model contains all the important elements of the analyzed section of the concrete bridge superstructure, namely concrete, reinforcement and the anchoring system. FEM analyses are performed with the inclusion of both material and geometric nonlinearities. Concrete Damage Plasticity (CDP) constitutive relation from Abaqus is used to describe nonlinear concrete behaviour, which enables analysis of concrete damage and crack propagation. These numerical FEM results are then compared with actual crack patterns, which have been spotted and inventoried at the bridge construction site.

Go to article

Authors and Affiliations

J. Chróscielewski
M. Miśkiewicz
Ł. Pyrzowski
B. Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

This study was carried out on the background of Sutong Bridge project based on fracture mechanics, aiming at analyzing the growth mechanism of fatigue cracks of a bridge under the load of vehicles. Stress intensity factor (SIF) can be calculated by various methods. Three steel plates with different kinds of cracks were taken as the samples in this study. With the combination of finite element analysis software ABAQUS and the J integral method, SIF values of the samples were calculated. After that, the extended finite element method in the simulation of fatigue crack growth was introduced, and the simulation of crack growth paths under different external loads was analyzed. At last, we took a partial model from the Sutong Bridge and supposed its two dangerous parts already had fine cracks; then simulative vehicle load was added onto the U-rib to predict crack growth paths using the extended finite element method.

Go to article

Authors and Affiliations

H. Zhu
Download PDF Download RIS Download Bibtex

Abstract

The analysis was focused on three post-tensioned slab bridges, constructed in 1950s. Two of them function normally and will probably achieve the life span of 100 years required by the relevant regulations. The third one will likely be demolished soon and replaced with a new reinforced concrete frame bridge. To its degradation contributed the faulty diagnosis of its technical condition during its periodic technical inspections. The introduction briefly characterises the development of the prestressed structure theories reviewing papers on concrete rheology and monographs looking into prestressing. The paper is based on the existing fragments of the technical design documents concerning the bridges in question. The bridges were designed by Polish civil engineers.

Go to article

Authors and Affiliations

S. Karaś
Download PDF Download RIS Download Bibtex

Abstract

In this paper a DC-link voltage balancing strategy for multilevel Cascaded H-Bridge (CHB) converter is proposed. Presented solution bases on optimal choice of active vector durations in Space-Vector Pulse Width Modulation (SV-PWM). It makes it possible to DC-link voltages control and to properly generate the output voltage vector in the case of DC-link voltage unbalance. Results of simulation and experimental researches on proposed control strategy are presented in the paper.
Go to article

Authors and Affiliations

Arkadiusz Lewicki
Download PDF Download RIS Download Bibtex

Abstract

The new topology of three-winding welding transformer is proposed. Each secondary winding is connected in parallel through the separate bridge rectifier to the welding arc. The main feature of the proposed device is parallel working of two secondary windings with different rated voltage. The advantage is nonlinear transformation ratio of current that provides unprecedented power efficiency. The self- and mutual leakage inductances, which are important in power conversion, are calculated by 2D FEA model. The operational current of the device is modelled numerically via P-Spice simulator. The proposed topology is up to 30% more power effective than conventional welding transformer provided that the leakage inductances of primary and secondary windings are correctly fitted. This transformer is used for manual arc welding.

Go to article

Authors and Affiliations

Lyudmila Sakhno
Olga Sakhno
Simon Dubitsky
Download PDF Download RIS Download Bibtex

Abstract

The effects of friction were observed in electric guitar strings passing over an electric guitar saddle. The effects of changing the ratio of the diameter of the winding to the diameter of the core of the string, the angle through which the string is bent, and the length on either side of the saddle were measured. Relative tensions were deduced by plucking and measuring the frequencies of vibration of the two portions of string. Coefficients of friction consistent with the capstan equation were calculated and were found to be lower than 0.26 for wound strings (nickel plated steel windings on steel cores) and lower than 0.17 for unwound (tin plated steel) strings. The largest values of friction were associated with strings of narrower windings and wider cores and this may be due to the uneven nature of the contact between the string and saddle for wound strings or due the surface of the windings deforming more, encouraging fresh (and therefore higher friction) metal to metal contact. It is advised to apply lubrication under the saddle to string contact point after first bringing the string up to pitch rather than before in order to prevent this fresh metal to metal contact.

Go to article

Authors and Affiliations

Tom Groves
Jonathan A. Kemp
Download PDF Download RIS Download Bibtex

Abstract

Prof. Przemysław Perlikowski, a mechanical engineer, and his wife Asst. Prof. Renata Perlikowska, who studies opioid peptides used in medicine, discuss the challenges of research work and life.

Go to article

Authors and Affiliations

Przemysław Perlikowski
ORCID: ORCID
Renata Perlikowska
Download PDF Download RIS Download Bibtex

Abstract

The state of the art in the field of composite polymer bridges in Poland is presented below. Such bridges were built from 1999. Some of them are fully composite polymer structure. Others are developed as hybrid structure. There are two kind of structures: steel girders with FRP deck and FRP girders with concrete deck. Different production methods of FRP elements were used: pultrusion and infusion. Some bridges are the result of research programs, but there are also some commercial projects. Also, the short application history of FRP bridges all over the world is presented and material properties of the construction material are given in the paper. Those materials are much more lighter than steel or concrete. Low weight of FRP materials is an advantage but also disadvantage. It is good from structural and economical point of view because the dimensions of girders, piers and foundation will be smaller. From opposite side to light structure could cause problems related to response of structure against dynamic actions. As a final result the fatigue strength and durability will be reduced. Of course, the high cost of FRP (CFRP especially) limits at the moment range of application. The presented in the paper bridge structures show that despite of mentioned above problems they are now in good conditions and their future life looks optimistic. It could be supposed that modification and/or development of FRP production technologies more better utilizing their properties will create more elegant and useful bridges.
Go to article

Bibliography


[1] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Wilde K., “Composite GFRP U-shaped footbridge”, Polish Maritime Research, Special Issue 2017 S1 (93) 2017 Vol. 24, pp. 25–31.
[2] Chróścielewski J., Miśkiewicz M., Pyrzowski Ł, Sobczyk B., Wilde K., “A novel sandwich footbridge – Practical application of laminated composites in bridge design and in situ measurements of static response”, Composites Part B Vol. 126, 2017, pp. 153–161.
[3] De Corte W., Jansseune A., Van Paepegem W., Peeters J., “Structural behaviour and robustness assessment of an InfraCore inside bridge deck specimen subjected to static and dynamic local loading”, Proceedings of the 21st International Conference on Composite Materials, Xi’an, 2017.
[4] Dong C.J., “Development of a process model for the vacuum assisted resin transfer molding simulation by the response surface method”, Composites: Part A Vol. 37, 2006, pp. 1316–1324.
[5] Grotte, B., Karwowski W., Mossakowski, P., Wróbel, M., Zobel, H., Żółtowski, P.: Steel, arch footbridge with composite polymer deck. „Wroclaw Bridge Days” - „Footbridges – Architecture, design, construction, research”. 29–30 November 2007, pp. 135–146.
[6] Grotte B., Karwowski W., Mossakowski P., Wróbel M., Zobel H., Żółtowski P., “Steel, arch footbridge with composite polymer deck with suspended composite polymer deck over S-11 highway nearby Kórnik”, Inżynieria i Budownictwo 1-2/2009, pp. 69–73.
[7] Karwowski W., “Material - structural conditions of joints in FRP bridges”, Ph. D. thesis, Warsaw University of Technology, Warsaw 2011.
[8] Madaj A., “Composite polymer bridges. New structural solutions of bridge girders”, Mosty 3/2015, pp. 58-60.
[9] Mossakowski P., Wróbel M., Zobel H., Żółtowski P. ,Pedestrian steel arch bridge with composite polymer deck. IV International Conference on “Current and future trends in bridge design, construction and maintenance”. Kuala Lumpur. Malaysia. October 2005.
[10] Mylavarapu R., Patnaik A., Puli K., R. K., “Basalt FRP: A new FRP material for infrastructure market?”, Proceedings of 4th International Conference on Advanced Composite Materials in Bridges and Structures, Canadian Society of Civil Engineers, Montreal, 2004.
[11] Patnaik A., “Applications of basalt fiber reinforced polymer (BFRP) reinforcement for transportation infrastructure”. Developing a Research Agenda for Transportation Infrastructure, TRB November, 2009.
[12] Pilarczyk K., “Application of composite panels InfraCore inside bridge structures”, Mosty 5/ 2019, pp. 74–75.
[13] Siwowski T., Kaleta D., Rajchel M., “Structural behaviour of an all-composite road bridge”, Composite Structures 192: pp. 555–567, 2018.
[14] Siwowski T., Rajchel M., Własak L., “Experimental study on static and dynamic performance of a novel GFRP bridge girder”, Composite Structures Vol. 259, 2021.
[15] Siwowski T., Rajchel M., Kulpa M, “Design and field evaluation of a hybrid FRP composite – lightweight concrete road bridge”, Composite Structures, Vol. 230, 2019.
[16] Siwowski T., Rajchel M., “Structural performance of a hybrid FRP composite – lightweight concrete bridge girder”, Composites Part B Vol. 174, 2019.
[17] Wąchalski K., “The design of renovation and widening of the J. Piłsudskiego bridge across Vistula river in Toruń, Poland”, Mosty 1/2021, pp. 50–56, (in Polish).
[18] Zobel H., Karwowski W, Wróbel M., „GFRP pedestrianbridge”, Inżynieria i Budownictwo nr 2/2003, pp. 107–108, (in Polish).
[19] Zobel H., “Composite Polymer Bridges”, Proceedings of 50-tie Conference „Scientific and Research Problems in Civil Engineering”, Krynica 2004, Vol I, pp. 381–410 (in Polish).
[20] Zobel H., Grotte B., Karwowski W., Wasiliew P., Wrobel M., Zoltowski P.: Pedestrian steel arch bridge with composite polymer deck and CFRP stays. IABSE Symposium “Metropolitan Habitats and Infrastructure”. Shanghai, China. September 2004. pp. 88–89 + CD.
[21] Zobel H., Karwowski W., Bridge composite polymer decks. Inżynieria i Budownictwo 11/2005, pp. 594–598. (in Polish).
[22] PN-EN 13706-3: 2004 Composite polymers. Technical Specifications for the profiles produced with pultrusion method. Part 3: Detailed requirements.
[23] http://www.mdacomposites.org/, 2005.
[24] Information Materials of the Mostostal Warszawa S.A. “Com-bridge – construction of the FRP structure”, 2016.
[25] Report of the Research Project “Material and structural conditions for joints in bridge structures made of FRP profiles realized in the Faculty of Civil Engineering at Warsaw University of Technology”. The project realized in 2005–2008 and financed by the Polish Ministry of Education and Science.
[26] https://fiberline.com/, 2021.
[27] https://www.kolbudy.pl, 2021.
Go to article

Authors and Affiliations

Tomasz Siwowski
1
ORCID: ORCID
Henryk Zobel
2
ORCID: ORCID
Thakaa Al-Khafaji
2
ORCID: ORCID
Wojciech Karwowski
2
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil & Environmental Engineering & Architecture, ul. Powstancow Warszawy 12, 35-859 Rzeszow, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to indicate the procedure of using laboratory physical model tests of scour around bridge piers for the purposes of determining the potential scour of a riverbed on field bridge crossings. The determination of the uniform modeling scale coefficient according to the criterion of reliable sediment diameter limits the application of the results of tests on physical models to selected types of sediment. The projected depths of scouring of the riverbed at the pier in nature were determined for an object reproduced in the scale of 1:15 determined from the relationship of flow resistance, expressed by hydraulic losses described by the Chézy velocity coefficient, the value of which, in the model and in nature, should be the same. Expressing the value of the Chézy velocity coefficient with the Manning roughness coefficient and introducing the Strickler parameter, it was shown that the coarse sand used in the laboratory bed models the flow resistance corresponding to the resistance generated by gravel in nature. The verification of the calculated size of scouring was based on popular formulas from Russian literature by Begam and Volčenkov [16], Laursen and Toch’s [20] from the English, and use in Poland according to the Regulation ... (Journal of Laws of 2000, No. 63, item 735) [32].
Go to article

Bibliography


[1] A. A. ven Te Chow, ”Open-Bed Hydraulics,” New York: McGraw-Hill Book Company, 1959.
[2] A. Duchaczek, D. Skorupka, “Evaluation of Probability of Bridge Damage as a Result of Terrorist Attack,” Archives of Civil Engineering, vol. 2, pp. 215–227, Jun. 2013. https://doi.org/10.2478/Ace-2013-0011
[3] A. Radecki-Pawlik, P. A. Carling, E. Słowik-Opoka, R. Breakspeare, “On sand-gravel bed forms investigation within the mountainous river,” Infrastruktura i Ekologia Terenów Wiejskich, vol. 3, pp. 119–134, 2005.
[4] A. Szuster, B. Utrysko, ”Hydraulika i podstawy hydromechaniki,” Warszawa: Wydawnictwo Politechniki Warszawskiej, 1986.
[5] B. Hodi, “Effect of Blockage and Densimetric Froude Number on Circular Bridge Pier Local Scour,” in Electronic Theses and Dissertations, vol 79, Windsor, Ontario, Canada, 2009.
[6] B. Liang, S. Du, X. Pan, L. Zhang, “Local Scour for Vertical Piles in Steady Currents: Review of Mechanisms, Influencing Factors and Empirical Equations,” Journal Marine Science Engineering, vol. 8, pp. 4–27, Dec. 2020. https://doi.org/10.3390/jmse8010004
[7] B. Melville, “The Physics of Local Scour at Bridge Pier,” in Fourth International Conference on Scour and Erosion, Civil and Environmental Engineering, The University of Auckland, Auckland, vol. K-2, pp. 28–40, 2008.
[8] B. Utrysko, S. Bajkowski, L. Sz. Dąbkowski, „Światła mostów i przepustów. Zasady obliczeń z komentarzem i przykładami,” Wrocław – Żmigród: Instytut Badawczy Dróg i Mostów, Poland, 2000.
[9] D. Panici, G. A. M. De Almeida, “Formation, growth, and failure of debris jams at bridge piers,” Water Resources Research, vol. 54, pp. 6226–6241, Aug. 2018. https://doi.org/10.1029/2017WR022177
[10] D. Poggi, N. O. Kudryavtseva, „Non-Intrusive Underwater Measurement of Local Scour Around a Bridge Pier,” Water, vol. 11, pp. 2063–2074, Oct. 2019. https://doi.org/10.3390/w11102063
[11] G. J. C. M. Hoffmans, H. J. Verheij, “Scour Manual,” Rotterdam: A. A. Balkema, 1997.
[12] H. D. Copp, J. P. Johnson, “Riverbed Scour at Bridge Pier,” Final Report WA-RD 118.1. Washington State Department of Transportation, Technical Report Standard Title Page, Washington State Department of Transportation. Planning. Research and Public Transportation Division in cooperation with the United States Department of Transportation, Pullman: Federal Highway Administration, 1987.
[13] H. D. Copp, J. P. Johnson, J. L. Mcintosh, “Prediction methods for local scour at intermediate bridge piers,” Transportation Research Record, vol. 1201, pp. 46–53, 1988.
[14] H. N. C. Breusers, A. J. Raudkivi, “Scouring. Hydraulic Design Considerations. Hydraulic Structures Design Manual,” London & New York: Association For Hydraulic Research Association 2. Taylor & Francis Group, 1991.
[15] J. Schalko, C. Lageder, V. Schmocker, V. Weitbrecht, R. M. Boes, “Laboratory Flume Experiments on the Formation of Spanwise Large Wood Accumulations: Part II–Effect on local scour,” Water Resources Research, vol. 55, pp. 4871–4885, May 2019. https://doi.org/10.1029/2019WR024789
[16] L. G. Begam, G. Volčenkov, “Vodopropusknaâ sposobnost’ mostov i trub,” Moskva: Transport, 1973.
[17] L. Sz. Dąbkowski, J. Skibiński, A. Żbikowski, „Hydrauliczne podstawy projektów wodnomelioracyjnych,” Warsaw: Państwowe Wydawnictwo Rolnicze i Leśne, 1982.
[18] M. Kiraga, “Local scour modelling on the basis of flume experiments,” Acta Scientiarum Polonorum Architectura, vol. 18, no. 4, pp. 15–26, Mar. 2019. https://doi.org:10.22630/ASPA.2019.18.4.41
[19] M. Kiraga, J. Urbański, S. Bajkowski, ”Adaptation of Selected Formulas for Local Scour Maximum Depth at Bridge Piers Region in Laboratory Conditions,” Water, vol. 12, pp. 2663–2682, Sept. 2020. https://doi.org/10.3390/w12102663
[20] M. Laursen,. A. Toch, ”Scour around piers and abutments,” Bulletin 4, Iowa: Iowa Highway Research Board, USA, 1956.
[21] M. R. Namaee, J. Sui, “Impact of armour layer on the depth of scour hole around side-by-side bridge piers under ice-covered flow condition,” Journal of Hydrology and Hydromechanics, vol. 67, no. 3, pp. 240–251, Jul. 2019. https://doi.org/10.2478/johh-2019-0010-240
[22] M. S. Fael, G. Simarro-Grande, J. P. Martı´n-Vide, A. H. Cardoso, “Local scour at vertical-wall abutments under clear-water flow conditions,” Water Resources Research, vol. 42, pp. 10408–10428, Oct. 2006. https://doi.org/10.1029/2005WR004443
[23] M. van Der Wal, G. Van Driel, H. J. Verheij, “Scour manual. Desk study”. Delft Hydraulics: Rijkswaterstaat, 1991.
[24] N. A. Obied, S. I. Khassaf, “Experimental Study for Protection of Piers Against Local Scour Using Slots,” International Journal of Engineering, vol. 32, no. 2, pp. 217–222, Mar. 2019. https://doi.org/10.5829/ije.2019.32.02b.05
[25] N. S. Cheng, M. Wei, “Scaling of Scour Depth at Bridge Pier Based on Characteristic Dimension of Large-Scale Vortex,” Water, vol. 11, pp. 2458–2466, Nov. 2019. https://doi.org/10.3390/w11122458
[26] O. Link, “Physical scale modeling of scour around bridge piers,” Journal of Hydraulic Research, vol. 57, no. 2, pp. 227–237, Jul. 2019. https://doi.org/10.1080/00221686.2018.1475428
[27] PN-B-02481: 1998 Geotechnika. Terminologia podstawowa, symbole literowe i jednostki miar. Polski Komitet Normalizacji, Miar i Jakości, Poland, 1998.
[28] PN-EN ISO 14688-1: 2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów. Część 1: Oznaczanie i opis. Polski Komitet Normalizacyjny, Poland, 2006.
[29] PN-EN ISO 14688-2: 2006 Badania geotechniczne. Oznaczanie i klasyfikowanie gruntów Część 2: Zasady klasyfikowania. Polski Komitet Normalizacyjny, Poland, 2006.
[30] R. Chavan, P. Gualtieri, B. Kumar, “Turbulent flow structures and scour hole characteristics around circular bridge piers over non-uniform sand bed beds with downward seepage,” Water, vol. 11, no. 8, pp. 1580–1597, Jul. 2019. https://doi.org/10.3390/w11081580
[31] R. W. P. May, J. C. Ackers A. M. Kirby, “Manual on scour at bridges and other hydraulic structures”. London: CIRIA C551, UK, 2020.
[32] Rozporządzenie z dnia 30 maja 2000 r. Ministra Transportu i Gospodarki Morskiej z dnia 30 maja 2000 roku w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie (Dz.U. 2000 nr 63 poz. 735). Regulation... (Journal of Laws 2000 No. 63 item 735).
[33] S. Bajkowski, “Effect of the Siekierka bridge on the flood flow on Zwoleńka river,” Wiadomości Melioracyjne i Łąkarskie, vol. 58, no. 1, pp. 23–29, 2015.
[34] S. Oh Lee, S. Ho Hong, “Turbulence Characteristics before and after Scour Upstream of a Scaled-Down Bridge Pier Model,” Water, vol. 11, pp. 1900–1914, Sept. 2019. https://doi.org/:10.3390/w11091900
[35] S. Bajkowski, “Bed load transport through road culverts,” Scientific Review Engineering and Environmental Sciences, vol. 2, no. 40, pp. 127–135, 2008.
[36] J. Urbański, “Influence of turbulence of flow on sizes local scour on weir model,” Acta Scientiarum Polonorum Architectura, vol. 7, no. 2, pp. 3–12, 2008.
[37] W.-G. Qi, F.-P. Gao, “Physical modeling of local scour development around a large-diameter monopile in combined waves and current,” Coastal Engineering, vol. 83, pp. 72–81, Jan. 2014. https://doi.org/10.1016/j.coastaleng.2013.10.007
[38] W. Majewski, ”Hydrauliczne badania modelowe inżynierii wodnej,” Seria publikacji naukowo-badawczych IMGW-PIB, Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Poland, 2019.
Go to article

Authors and Affiliations

Sławomir Bajkowski
1
ORCID: ORCID
Marta Kiraga
1
ORCID: ORCID
Janusz Urbański
1
ORCID: ORCID

  1. Warsaw University of Life Sciences WULS-SGGW, Institute of Civil Engineering, ul. Nowoursynowska 159, 02-787 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the main causes of road pavement distress are low temperatures, and hence the need to thoroughly study the low temperature performance of all bituminous materials used in road construction. The purpose of this studywas to determine the performance of alternative and conventional bituminous mixtures in the temperature range between –25˚C and –10˚C using for this purpose the Tensile Creep Test (TCT). The low-temperature performance data were evaluated using the Burgers model, a tool that is widely used for evaluation of bituminous mixtures. This research focuses on bridge paving mixtures. These included both conventional (mastic asphalt) and alternative (SMAMA) materials. It was established, based on the test results and their analysis, that low temperature performance of a bituminous mixture is influenced, in the first place, by the characteristics of the asphalt binder it contains. Furthermore, SMA-MA mixtures showed better low temperature performance than conventional, mastic asphalt type mixtures.
Go to article

Authors and Affiliations

Bartosz Budziński
1
ORCID: ORCID
Paweł Mieczkowski
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Civil and Environmental Engineering, Al. Piastów17, 70-310 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Development of the transport infrastructure in Poland has contributed to the implementation of various technologies of construction of bridges and their components. Use of reinforced soil for construction of embankments, retaining structures (RSS walls) and abutments is one of the solutions which has been frequently used for the past twenty years. Shortly after its development, the technology proposed by Henri Vidal in 1966 also gained appreciation in Poland [4]. Reinforced soil bridge abutments started to be widely used in Poland at the turn of the 20th century. The bridge facilities at the junction of Trasa Siekierkowska route and Wał Miedzeszyński Street in Warsaw, which were built in the years 2000÷2002, are an example of structures from that period. The authors of this paper have been particularly interested in the outermost supports of the reinforced concrete flyovers which were constructed in the form of intermediate reinforced soil abutments. Offsets – the vertical displacements, in the range of 15÷25mm, emerging between the level of the road surface and the steel elements of the expansion joints which separate the flyover’s structure from the embankment – were observed in 2015, in the course of regular inspections. While accounting for the observations which have been made, the surveying measurements and the ground investigation, the paper diagnoses and describes the mechanism which led to the emergence of the offsets. Potential patterns of the occurrence of additional settlements, as the reason for emergence of the offsets, were identified and analyzed. The settlement of the outermost support (abutment), as a result of increase of relative density of alluvial sands due to the dynamic interaction of the roadways of Wał Miedzeszyński Street, was analyzed. Analytical and numeric approaches were used in the course of analysis while relying on PLAXIS and MIDAS software.

Go to article

Authors and Affiliations

M. Bukowski
P. Łysiak
R. Oleszek
W. Trochymiak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an overview of shaping of cable-stayed bridges. Historical background, basic static sketches and overview of selected bridges are included. Selected natural solutions and interesting unrealized projects were presented. Basic ideas and most important principals are discussed. The examples and sketches were given an author’s comment. Static diagrams of two pylon structures with three variants of the arrangement of cables are presented. The details important for the structure were discussed and the consequences of choosing the variant were indicated. Mono-pylon structures in asymmetric and symmetrical arrangements are shown. the solutions are discussed and the details important for the structure are indicated. An overviewof multi-pylon structures is also presented, paying attention to important details. All the discussed static diagrams were enriched with realized examples. The advantages and disadvantages of individual structural solutions are presented. The main ideas allowing to achieve the goal in the implementation of non-standard suspended structures were also indicated.
Go to article

Bibliography

[1] W. Podolny and J.B. Scalzi, “Construction and design of cable-stayed bridges”, John Wiley and Sons, Inc., New York, 1976.
[2] M. Troitski, “Cable-stayed bridges”, BSP Professional Books, 1988.
[3] K. Roik, A. Gert, and U. Weyer, “Schrägseilbrücken”, Ernst & Sohn, Verlag für Architektur und Technische Wissenschaften, Berlin, 1986.
[4] F. Leonhardt, “Bridges”, Deutsche Verlag-Anstalt, 1984.
[5] H. Svensson, “Cable-stayed bridges”, 40 Years of Experience Wordlwide, Ernst and Sohn, 2012.
[6] J. Biliszczuk, “Cable-stayed bridges”, Design and Realization, Arkady, 2005.
[7] J. Szczygieł, “Reinforced and prestressed bridges”, WKiŁ, 1972.
[8] J. Biliszczuk, “Bridges in the history of Poland”, DWE, 2017.

Go to article

Authors and Affiliations

Krzysztof Żółtowski
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, ul. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bridge crane is exposed to dynamic loads during its non-stationary operations (acceleration and braking). Analyzing these operations, one can determine unknown impacts on the dynamic behavior of bridge crane. These impacts are taken into consideration using selected coefficients inside the dynamic model. Dynamic modelling of a bridge crane in vertical plane is performed in the operation of the hoist mechanism. The dynamic model is obtained using data from a real bridge crane system. Two cases have been analyzed: acceleration of a load freely suspended on the rope when it is lifted and acceleration of a load during the lowering process. Physical quantities that are most important for this research are the values of stress and deformation of main girders. Size of deformation at the middle point of the main crane girder is monitored and analyzed for the above-mentioned two cases. Using the values of maximum deformation, one also obtains maximum stress values in the supporting construction of the crane.
Go to article

Bibliography

[1] Q. Yang, X. Li, H. Cai, Y-M. Hsu, J. Lee, C. Hung Yang, Z. Li Li, and M. Yi Li. Fault prognosis of industrial robots in dynamic working regimes: Find degradation in variations. Measurement, 173:108545, 2021. doi: 10.1016/j.measurement.2020.108545.
[2] S. Wang, Z. Ren, G. Jin, and H. Chen. Modeling and analysis of offshore crane retrofitted with cable-driven inverted tetrahedron mechanism. IEEE Access, 9:86132–86143, 2021. doi: 10.1109/access.2021.3063792.
[3] Q. Jiao, B. Li, Y. Qin, F. Wang, J. Gu, J. Wang, and C. Mi, Research on dynamic characteristics of lifting rope-breaking for the nuclear power crane. Journal of Failure Analysis and Prevention, 21:1220–1230, 2021. doi: 10.1007/s11668-021-01154-2.
[4] D. Cekus, P. Kwiatoń, and T. Geisler. The dynamic analysis of load motion during the interaction of wind pressure. Meccanica, 56:785–796, 2021. doi: 10.1007/s11012-020-01234-x.
[5] J. Yuan, C. Schwingshackl, C. Wong, and L. Salles. On an improved adaptive reduced-order model for the computation of steady-state vibrations in large-scale non-conservative systems with friction joints. Nonlinear Dynamics, 103:3283–3300, 2021. doi: 10.1007/s11071-020-05890-2.
[6] H. Zhu, J. Li, W. Tian, S. Weng, Y. Peng, Z. Zhang, and Z. Chen. An enhanced substructure-based response sensitivity method for finite element model updating of large-scale structures. Mechanical Systems and Signal Processing, 154:107359, 2021. doi: 10.1016/j.ymssp.2020.107359.
[7] I. Golvin and S. Palis. Robust control for active damping of elastic gantry crane vibrations. Mechanical Systems and Signal Processing, 121:264–278, 2019. doi: 0.1016/j.ymssp.2018.11.005.
[8] L. Sowa, W. Piekarska, T. Skrzypczak, and P. Kwiatoń. The effect of restraints type on the generated stresses in gantry crane beam. MATEC Web Conferences, 157:02046, 2018. doi: 10.1051/matecconf/201815702046.
[9] Y.A. Onur and H. Gelen. Design and deflection evaluation of a portal crane subjected to traction load. Materials Testing, 62(11):1131–1137, 2020. doi: 10.3139/120.111597.
[10] Y.A. Onur and H. Gelen. Investigation on endurance evaluation of a portal crane: experimental, theoretical and finite element analysis. Materials Testing, 62(4):357–364. 2020. doi: 10.3139/120.111491.
[11] A. Komarov, A. Grachev, A. Gabriel, and N. Mokhova. Simulation of the misalignment process of an overhead crane in Matlab/Simulink. E3S Web Conferences, 304:02008, 2021. doi: 10.1051/e3sconf/202130402008.
[12] A. Cibicik, E. Pedersen, and O. Egeland. Dynamics of luffing motion of a flexible knuckle boom crane actuated by hydraulic cylinders. Mechanism and Machine Theory, 143:103616, 2020. doi: 10.1016/j.mechmachtheory.2019.103616.
[13] D. Cekus and P. Kwiatoń. Effect of the rope system deformation on the working cycle of the mobile crane during interaction of wind pressure. Mechanism and Machine Theory, 153:104011, 2020. doi: 10.1016/j.mechmachtheory.2020.104011.
[14] D. Ostric, N. Zrnic, and A. Brkic. A modeling of bridge cranes for research of dynamic phenomena during their movement. Tehnika – Mašinstvo, 51(3-4):1–6, 1996.
[15] T. Wang, N. Tan, X. Zhang, G. Li, S. Su, J. Zhou, J. Qiu, Z, Wu, Y. Zhai, and R. Donida Labati. A time-varying sliding mode control method for distributed-mass double pendulum bridge crane with variable parameters. IEEE Access, 9:75981–75992, 2021. doi: 10.1109/access.2021.3079303.
[16] M.S. Komarov. Dynamics of load-carrying machines. Madagiz, Moscow, 1962. (in Russian).
[17] S. Dedijer. Dynamic coefficients in operation of bridge cranes of small and medium load capacity. D.Sc. Thesis, Faculty of Mechanical Engineering, Belgrade, Jugoslavia, 1970.
[18] D. Scap. Dynamic loads of the bridge crane when lifting loads. Tehnika - Strojarstvo, 24(6):307–315, 1982.
[19] H.A. Lobov. Dynamics of load-carrying cranes. Mechanical Engineering, Moscow, Russia, 1987. (in Russian).
[20] D. Ostric, A. Brkic, and N. Zrnic. The analysis of influence of swing of the cargo and rigidity of driving shafts of mechanism for moving to the dynamic behaviour of the bridge crane. Proceedings of IX IFToMM Congress, Milano, 1995.
[21] D. Ostric, A. Brkic, and N. Zrnic. The analysis of bridge cranes dynamic behaviour during the work of hoisting mechanism. Proceedings of XIV IcoMHaW, Faculty of Mechanical Engineering, Belgrade, 1996.
[22] M. Delić, M. Čolić, E. Mešić, and N. Pervan. Analytical calculation and FEM analysis main girder double girder bridge crane. TEM Journal, 6(1):48–52, 2017. doi: 10.18421/TEM61-07.
[23] M. Delić, N. Pervan, M. Čolić, and E. Mešić. Theoretical and experimental analysis of the main girder double girder bridge cranes. International Journal of Advanced and Applied Sciences, 6(4):75–80, 2019. doi: 10.21833/ijaas.2019.04.009.
[24] H. A. Hobov. Calculation of dynamic loads of bridge cranes when lifting a load. Bulletin of Mechanical Engineering, 5:37–41, 1977. (in Russian).
[25] D. Ostric, A. Brkic, and N. Zrnic. Influence of driving-shaf to dynamic behavior of the bridge crane in horizontal plane, modeled with several concentrated masses during the acceleration. FME Transactions, 2: 25–30, 1993.
[26] S.G. Kelly. Mechanical Vibrations – Theory and Applications, Global Engineering, Stamford, USA, 2012.
Go to article

Authors and Affiliations

Mirsad Čolić
1
Nedim Pervan
1
ORCID: ORCID
Muamer Delić
1
ORCID: ORCID
Adis J. Muminović
1
ORCID: ORCID
Senad Odžak
2
ORCID: ORCID
Vahidin Hadžiabdić
1
ORCID: ORCID

  1. Faculty of Mechanical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
  2. Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina

This page uses 'cookies'. Learn more