Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Casting quality depends on many factors including the quality of the input materials, technology, material securing and last but not least, the mould into which the casting is casted. By pouring into a single-shot mould, based mainly on 1st generation binders, is is a very important factor. Basically, a bentonite mixture represents either a three- or four-component system, but each component of the system is a heterogeneous substance. This heterogeneity punctuates mainly a non-stationary heat field, presented throughout the whole process of the casting production. The most important component is a binder and in the case of first generation binders mostly bentonites are used - clays that contain minimum of 80% of montmorillonite
Go to article

Authors and Affiliations

I. Vasková
D. Fecko
J. Malik
Download PDF Download RIS Download Bibtex

Abstract

Studies were conducted on a zinc coating produced on the surface of ductile iron grade EN-GJS-500-7 to determine the eutectic grain

effect. For this purpose, castings with a wall thickness of 5 to 30 mm were made and the resulting structure was examined. To obtain a

homogeneous metal matrix, samples were subjected to a ferritising annealing treatment. To enlarge the reaction surface, the top layer was

removed from casting by machining. Then hot dip galvanising treatment was performed at 450°C to capture the kinetics of growth of the

zinc coating (in the period from 60 to 600 seconds). Analysing the test results it was found that within the same time of hot dip

galvanising, the differences in the resulting zinc coating thickness on samples taken from castings with different wall cross-sections were

small but could, particularly for shorter times of treatment, reduce the continuity of the alloyed layer of the zinc coating.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process,

considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of

ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured

with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty.

Go to article

Authors and Affiliations

A. Karwiński
R. Biernacki
A. Soroczyński
R. Haratym
Download PDF Download RIS Download Bibtex

Abstract

This article discusses the possibility of using a two-track X-S control card on a Mesas device to control the production process parameters of piston castings for combustion engines. The research was carried out at the Federal-Mogul Gorzyce company. The basis for estimating the variability of the process results from the mean value (X) is the standard deviation (S). Thanks to specially designed measuring stations that use algorithms to calculate process indicators (Cp and/or Cpk) and their visualization, the cost of manufacturing products and the number of non-compliant products (scraps) are reduced. The process stability was investigated by measuring the key dimensions of the piston casting in a specific population and a given measurement cycle. Taking into account the precision of details, their technical condition, and surface quality, the production machines and cutting tools were optimally selected. It has been found that an important element of the effective use of Statistical Process Control (SPC) are trained/experienced operators who can correctly interpret the resulting control chart forms.
Go to article

Bibliography

[1] Czarski, A., Satora, K. (1998). Statistical process control. Teaching materials. Cracow: Stat-Q-Mat s.c.
[2] Dahlgaard, J.J., Kristensen, K., Kanji, G.K. (2002). Podstawy zarządzania jakością. Warsaw: PWN.
[3] Grant, E.L., Leavenworth, R.S. (1996). Statistical quality control. McGraw-Hill.
[4] Hamrol, A. (2005). Quality management with examples. Warsaw: PWN.
[5] Kończak, G. (2000). Application of control cards in quality control in the course of production. Katowice: Publishing House of the University of Economics in Katowice.
[6] Kończak, G. (2007). Statistical methods in controlling the quality of production. Katowice: Publishing House of the University of Economics in Katowice.
[7] Maliński, M. (2004). Computer aided verification of statistical hypotheses. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[8] Chrapoński, J. (2010). Fundamentals of statistical processes control. Katowice: Publishing House of the Silesian University of Technology in Gliwice.
[9] Statistical Process Control SPC Second edition. AIAG, Berlin-London, July 2005, p. 57.
[10] Polska Norma PN-ISO 8258+AC1: Karty kontrolne Shewharta. PKN, 1996.
[11] Quality Assurance for Suppliers. Quality Management in the Automotive Industry. Production process and product approval (PPA). 5th edition, Berlin 2012.
Go to article

Authors and Affiliations

A. Krępa
1
J. Piątkowski
2
ORCID: ORCID

  1. Federal-Mogul Gorzyce Sp. z o.o., Odlewników 52, 39-432 Gorzyce, Poland
  2. Silesian University of Technology, Krasińskiego 8 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the best castings’ manufacturers have to meet very demanding requirements and specifications applicable to mechanical properties and other characteristics. To fulfill those requirements, more and more sophisticated methods are being used to analyze the internal quality of castings. In many cases, the commonly used Non-Destructive Methods, like X-ray or ultrasonic testing, are not enough to ensure precise and unequivocal evaluation. Especially, when the properties of the casting only slightly fail the specification and the reasons for such failures are very subtle, thus difficult to find without the modern techniques. The paper presents some aspects of such an approach with the use of Scanning Electron Microscopy (SEM) to analyze internal defects that can critically decrease the performance of castings. The paper presents the so-called bifilm defects in ductile and chromium cast iron, near-surface corrosion caused by sulfur, micro-shrinkage located under the risers, lustrous carbon precipitates, and other microstructure features. The method used to find them, the results of their analysis, and the possible causes of the defects are presented. The conclusions prove the SEM is now a powerful tool not only for scientists but it is more and more often present in the R&D departments of the foundries.
Go to article

Bibliography

[1] Mehta, N.D., Gohil, A.V. & Doshi, J.S. (2018). Innovative support system for casting defect analysis – a need of time. Materials Today: Proceedings. 5, 4156-4161. DOI: 10.1016/j.matpr.2017.11.677.
[2] Petrus, Ł., Bulanowski, A., Kołakowski, J., Brzeżański, M., Urbanowicz, M, Sobieraj, J., Matuszkiewicz, G., Szwalbe, L & Janerka, K. (2020). The influence of selected melting parameters on the physical and chemical properties of cast iron. Archives of Foundry Engineering. 1, 105-110. DOI: 10.24425/afe.2020.131290.
[3] Garbacz-Klempka, A., Karczmarek, Ł., Kwak, Z., Kozana, J., Piękoś, M., Perek-Nowak, M. & Długosz, P. (2018). Analysis of a castings quality and metalworking technology. treasure of the bronze age axes. Archives of Foundry Engineering. 3, 179-185. DOI: 10.24425/123622.
[4] Bogner, A., Jouneau, P.-H., Thollet, G., Basset, D. & Gauthier, C. (2007). A history of scanning electron microscopy developments: Towards ‘‘wet-STEM’’ imaging. Micron. 38, 390–401. DOI: 10.1016/j.micron.2006.06.008.
[5] Kalandyk, B., Zapała, R., Sobula, S. & Tęcza, G. (2019). The effect of CaSiAl modification on the non-metallic inclusions and mechanical properties of low-carbon microalloyed cast steel. Archives of Foundry Engineering. 1, 47-52. DOI: 10.24425/afe.2018.125190.
[6] Gawdzińska, K. (2017). Methods of the detection and identification of structural defects in saturated metallic composite castings. Archives of Foundry Engineering. 3, 37-44. DOI: 10.1515/afe-2017-0087.
[7] Nicoletto, G., Konecna, R. & Fintova, S. (2012). Characterization of microshrinkage casting defects of Al–Si alloys by X-ray computed tomography and metallography. International Journal of Fatigue. 41, 39-46. DOI: 10.1016/j.ijfatigue.2012.01.006.
[8] Li, J., Chen, R., Ma, Y. & Ke, W. (2014). Characterization and prediction of microporosity defect in sand cast WE54 alloy castings. Journal of Materials Science & Technology. 30(10), 991-997. DOI: 10.1016/j.jmst.2014.03.011.
[9] Velasco, E., Rodríguez, A., González, J.A., Talamantes, J., Colás, R. & Valtierra, S. (2003). Use of microscopical techniques in failure analysis and defect control in automotive castings. microscopy and microanalysis 9 (Suppl 2), 160-161. DOI: 10.1017/S1431927603440713.
[10] Staude, A., Bartscher, M., Ehrig, K., Goebbels, J., Koch, M., Neuschaefer-Rube, U. & Notel, J. (2011). Quantification of the capability of micro-CT to detect defects in castings using a new test piece and a voxel-based comparison method. NDT&E International. 44, 531-536.
[11] Bovas Herbert Bejaxhin, A., Paulraj, G. & Prabhakar, M. (2019). Inspection of casting defects and grain boundary strengthening on stressed Al6061 specimen by NDT method and SEM micrographs. Journal of Materials Research Technology. 8(3), 2674-2684. DOI: 10.1016/j.jmrt.2019.01.029.
[12] Haguenau, F., Hawkes, P. W., Hutchison, J.L., Satiat–Jeunemaître, B., Simon, G. T. & Williams, D. B. (2003). Key events in the history of electron microscopy. Microscopy and Microanalysis. 9, 96-138. DOI: 10.1017/S1431927603030113.
[13] Davut, K., Yalcin, A. & Cetin, B. (2017). Multiscale microstructural analysis of austempered ductile iron castings. Microscopy and Microanalysis. 23(1), 350-351. DOI: 10.1017/S1431927617002434.
[14] Bedolla-Jacuinde, A. Correa, R., Quezada, J.G. & Maldonado, C. (2005). Effect of titanium on the as-cast microstructure of a 16% chromium white iron. Materials Science and Engineering A. 398, 297–308. DOI: 10.1016/j.msea.2005.03.072.
[15] Bedolla-Jacuinde, A., Aguilar, S.L. & Hernandez, B. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: i. effect on microstructure. Journal of Materials Engineering and Performance. 14, 149-157. DOI: 10.1361/10599490523300.
[16] Bedolla-Jacuinde, A., Aguilar, S.L. & Maldonado, C. (2005). Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: part ii. effect on the wear behavior. Journal of Materials Engineering and Performance. 14, 301-306. DOI: 10.1361/10599490523300.
[17] Chung, R.J., Tang, X., Li, D.Y., Hinckley, B. & Dolman, K. (2013). Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear. 301, 695-706. DOI: 10.1016/j.wear.2013.01.079.
[18] Guo, E., Wang, L., Wang, L. & Huang, Y. (2009). Effects of RE, V, Ti and B composite modification on the microstructure and properties of high chromium cast iron containing 3% molybdenum. Rare Metals. 28, 606-611. DOI: 10.1007/s12598-009-0116-1.
[19] Siekaniec, D., Kopyciński, D., Szczęsny, A., Guzik, E., Tyrała, E. & Nowak, A. (2017). Effect of titanium inoculation on tribological properties of high chromium cast iron. Archives of Foundry Engineering. 4, 143-146. DOI: 10.1515/afe-2017-0146.
[20] Kopyciński, D. & Piasny, S. (2016). Influence of inoculation on structure of chromium cast iron. in characterization of Minerals, Metals, and Materials, Ikhmayies, S.J., Ed.; Springer Science and Business Media LLC: Berlin, Germany, 705-712.
[21] Kopyciński, D. (2009). Inoculation of chromium white cast iron. Archives of Foundry Engineering. 9, 191-194.
[22] Tiryakioglu, M. (2020). On the heterogeneous nucleation pressure for hydrogen pores in liquid aluminium. International Journal of Cast Metals Research. 33(4-5), 153-156. DOI: 10.1080/13640461.2020.1797335.
[23] Tiryakioglu, M. (2020). The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality. Metals. 10, 368. DOI: 10.3390/met10030368.
[24] Dojka, M. & Stawarz, M. (2020). Bifilm defects in Ti-inoculated chromium white cast iron. Materials. 13, 3124. DOI: 10.3390/ma13143124.
[25] Campbell, J. (2015). Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design. 2nd ed. Oxford, UK: Butterworth-Heinemann.
[26] Jonczy, I. (2014). Diversification of phase composition of metallurgical wastes after the production of cast iron. Archives of Metallurgy and Materials. 59 (2), 481-485. DOI: 10.2478/AMM-2014-0079.
[27] Campbell, J. (2009). A Hypothesis for cast iron microstructures. Metallurgical and Materials Transactions B. 40(6), 786-801. DOI: 10.1007/s11663-009-9289-0.
[28] Mihailova I., Mehandjiev, D. (2010). Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy. 45(3), 317-326.
[29] Presnall, D.C. (1995). Phase diagrams of Earth-forming minerals. Mineral Physics & Crystallography – A Handbook of Physical Constants. 2, 248–268.
[30] Lide, D.R. (2004). Handbook of chemistry and physics. CRC Press LLC, Boca Raton.
[31] Irons, G.A. & Guthrie, R.I.L. (1981). Kinetic aspects of magnesium desulfurization of blast furnace iron. Ironmaking and Steelmaking. 8, 114-21.
Go to article

Authors and Affiliations

J. Jezierski
1
ORCID: ORCID
M. Dojka
1
M. Stawarz
1
ORCID: ORCID
R. Dojka
2

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa, 44-100 Gliwice, Poland
  2. ODLEWNIA RAFAMET Sp. z o.o., 1 Staszica, 47-420 Kuźnia Raciborska, Poland
Download PDF Download RIS Download Bibtex

Abstract

The FMEA (Failure Mode and Effects Analysis) method consists in analysis of failure modes and evaluation of their effects based on

determination of cause-effect relationships for formation of possible product or process defects. Identified irregularities which occur

during the production process of piston castings for internal combustion engines were ordered according to their failure rates, and using

Pareto-Lorenz analysis, their per cent and cumulated shares were determined. The assessments of risk of defects occurrence and their

causes were carried out in ten-point scale of integers, while taking three following criteria into account: significance of effects of the defect

occurrence (LPZ), defect occurrence probability (LPW) and detectability of the defect found (LPO). A product of these quantities

constituted the risk score index connected with a failure occurrence (a so-called “priority number,” LPR). Based on the observations of the

piston casting process and on the knowledge of production supervisors, a set of corrective actions was developed and the FMEA was

carried out again. It was shown that the proposed improvements reduce the risk of occurrence of process failures significantly, translating

into a decrease in defects and irregularities during the production of piston castings for internal combustion engines.

Go to article

Authors and Affiliations

J. Piątkowski
P. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of tests carried out on ausferrite carbide matrix alloyed ductile cast iron. The ausferrite was obtained via addition of Cu and Mo alloying elements. This eliminated heat treatment from the alloy production cycle. The article presents results of tests of the quality of the obtained material. Emphasis was put on metallographic analysis using light and scanning microscopy. Works also included chemical composition tests and EDS analysis. Strength tests were executed in an accredited laboratory. It is possible to create a raw ausferrite carbide matrix without subjecting an alloy to heat treatment. However, it turned out that quality parameters of cast iron were insufficient. The obtained material hardness was 515 HB, while Rm strength and A5 ductility were very low. The low tensile strength of the analyzed alloy resulted from the presence of degenerate graphite secretion (of flake or vermicular shape) in the cast iron. The tests also demonstrated that the alloy was prone to shrinkage-related porosity, which further weakened the material. Alloys made of alloyed ductile iron of ausferrite matrix micro-structure are very attractive due to elimination of the heat treatment process. However, their production process and chemical composition must be optimized.
Go to article

Bibliography

[1] Ahmed, M., Riedel, E., Kovalko, M., Volochko, A., Bähr, R. & Nofal, A. (2022). Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field. International Journal of Metalcasting. 16(3), 1463-1477. DOI: 10.1007/s40962-021-00683-8.
[2] Benam, A.S. (2015). Effect of alloying elements on austempered ductile iron (ADI) properties and its process: review. China Foundry. 12(1), 54-70.
[3] Uyar, A., Sahin, O., Nalcaci, B., & Kilicli. V. (2022). Effect of austempering times on the microstructures and mechanical properties of dual-matrix structure austempered ductile iron (DMS-ADI). International Journal of Metalcasting. 16(1), 407-418. DOI: 10.1007/s40962-021-00617-4.
[4] Lefevre, J. & Hayrynen. K.L. (2013). Austempered materials for powertrain applications. Journal of Materials Engineering and Performance. 22(7), 1914-1922. DOI: 10.1007/s11665-013-0557-4.
[5] Tyrała, E., Górny, M., Kawalec, M., Muszyńska, A. & Lopez, H.F. (2019). Evaluation of volume fraction of austenite in austempering process of austempered ductile iron. Metals. 9(8), 1-10. DOI: 10.3390/met9080893.
[6] Fraś, E., Górny, M., Tyrała, E. & Lopez. H. (2012). Effect of nodule count on austenitising and austempering kinetics of ductile iron castings and mechanical properties of thin walled iron castings. Materials Science and Technology. 28(12), 1391-1396. DOI: 10.1179/1743284712Y.0000000088.
[7] Ibrahim, M.M., Negm, A.M., Mohamed, S.S. & Ibrahim. K.M. (2022). Fatigue properties and simulation of thin wall ADI and IADI castings. International Journal of Metalcasting. 16(4), 1693-1708. DOI: 10.1007/s40962-021-00711-7.
[8] Gumienny, G. & Kacprzyk. B. (2018). Copper in ausferritic compacted graphite iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[9] Abdullah, B., Alias, S. K., Jaffar, A., Rashid, A.A., Ramli, A. (2010). Mechanical properties and microstructure analysis of 0.5% niobium alloyed ductile iron under austempered process in salt bath treatment. International Conference on Mechanical and Electrical Technology, (pp. 610-614). DOI: 10.1109/ICMET.2010.5598431.
[10] Akinribide, O.J., Ogundare, O.D., Oluwafemi, O.M., Ebisike, K., Nageri, A.K., Akinwamide, S.O., Gamaoun, F. & Olubambi, P.A. (2022). A review on heat treatment of cast iron: phase evolution and mechanical characterization. Materials. 15(20), 1-38. DOI: 10.3390/ma15207109. [11] Samaddar, S., Das, T., Chowdhury, A.K., & Singh, M. (2018). Manufacturing of engineering components with Austempered ductile iron - A review. Materials Today: Proceedings. 5(11), 2561525624. DOI: 10.1016/j.matpr.2018.11.001.
[12] Stachowiak, A., Wieczorek, A.N., Nuckowski, P., Staszuk, M. & Kowalski, M. (2022). Effect of spheroidal ausferritic cast iron structure on tribocorrosion resistance. Tribology International. 173. DOI: 10.1016/j.triboint.2022.107688.
[13] Myszka, D. & Wieczorek, A. (2015). Effect of phenomena accompanying wear in dry corundum abrasive on the properties and microstructure of austempered ductile iron with different chemical composition. Archives of Metallurgy and Materials. 60(1), 483-490. DOI: 10.1515/amm-2015-0078.
[14] Pimentel, A.S.O., Guesser, W.L., Portella, P.D., Woydt, M. & Burbank. J. (2019). Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium. Materials Performance and Characterization. 8(1), 402-418. DOI: 10.1520/MPC20180188.
[15] Machado, H.D., Aristizabal-Sierra, R., Garcia-Mateo, C. & Toda-Caraballo, I. (2020). Effect of the starting microstructure in the formation of austenite at the intercritical range in ductile iron alloyed with nickel and copper. International Journal of Metalcasting. 14(3), 836-845. DOI: 10.1007/s40962-020-00450-1.
[16] Janowak, J.F. & Gundlach. R.B. (1985). Approaching austempered ductile iron properties by controlled cooling in the foundry. Journal of Heat Treating. 4(1), 25-31. DOI: 10.1007/BF02835486.
[17] Gumienny, G. & Kurowska, B. (2018). Alternative technology of obtaining ausferrite in the matrix of spheroidal cast iron. Transactions of the Foundry Research Institute. 58(1), 13-29. DOI: 10.7356/iod.2018.02.
[18] Gumienny, G., Kacprzyk, B., Mrzygłód, B. & Regulski. K. (2022). Data-driven model selection for compacted graphite iron microstructure prediction. Coatings. 12(11). DOI: 10.3390/coatings12111676.
[19] Tenaglia, N.E., Pedro, D.I., Boeri, R.E. & Basso. A.D. (2020). Influence of silicon content on mechanical properties of IADI obtained from as cast microstructures. International Journal of Cast Metals Research. 33(2-3), 72-79. DOI: 10.1080/13640461.2020.1756082.
[20] Méndez, S., De La Torre, U., González-Martínez, R. & Súarez. R. (2017). Advanced properties of ausferritic ductile iron obtained in as-cast conditions. International Journal of Metalcasting. 11(1), 116-122. DOI: 10.1007/s40962-016-0092-9.
[21] Kashani, S.M. & Boutorabi. S. (2009). As-cast acicular ductile aluminum cast iron. Journal of Iron and Steel Research International. 16(6), 23-28. DOI: 10.1016/S1006-706X(10)60022-2.
[22] Ferry, M. & Xu. W. (2004). Microstructural and crystallographic features of ausferrite in as-cast gray iron. Materials Characterization. 53(1), 43-49. DOI: 10.1016/j.matchar.2004.07.008.
[23] Stawarz, M. & Nuckowski. P. M. (2022). Corrosion behavior of simo cast iron under controlled conditions. Materials. 15(9), 1-14. DOI: 10.3390/ma15093225.
[24] Stawarz, M. (2018). Crystallization process of silicon molybdenum cast iron. Archives of Foundry Engineering. 18(2), 100-104. DOI: 10.24425/122509.
[25] Vaško, A., Belan, J. & Tillová. E. (2018). Effect of copper and molybdenum on microstructure and fatigue properties of nodular cast irons. Manufacturing Technology. 18(6), 1049-1052. DOI: 10.21062/ujep/222.2018/a/1213-2489/mt/18/6/1048.
[26] Silman, G.I., Kamynin, V.V. & Tarasov. A.A. (2003). Effect of copper on structure formation in cast iron. Metal Science and Heat Treatment. 45(7-8), 254-258. DOI: 10.1023/A:1027320116132.
[27] Gumienny, G., Kacprzyk, B. & Gawroński, J. (2017). Effect of copper on the crystallization process, microstructure and selected properties of CGI. Archives of Foundry Engineering. 17(1), 51-56. DOI: 10.1515/afe-2017-0010.
[28] Vaško, A. (2017). Fatigue properties of nodular cast iron at low frequency cyclic loading. Archives of Metallurgy and Materials. 62(4), 2205-2210. DOI: 10.1515/amm-2017-0325.
[29] Stawarz, M. & Nuckowski. P.M. (2020). Effect of Mo addition on the chemical corrosion process of SiMo cast iron. Materials. 13(7), 1-10. DOI: 10.3390/ma13071745.
[30] Stawarz, M. (2017). SiMo ductile iron crystallization process. Archives of Foundry Engineering. 17(1), 147-152. DOI: 10.1515/afe-2017-0027.
[31] Zych, J., Myszka, M. & Kaźnica, N. (2019). Control of selected properties of „Vari-morph” (VM) cast iron by means of the graphite form influence, described by the mean shape indicator. Archives of Foundry Engineering. 19(3), 43-48. DOI: 10.24425/afe.2019.127137.

Go to article

Authors and Affiliations

M. Stawarz
1
ORCID: ORCID
M. Lenert
1
K. Piasecki
1
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, Towarowa 7 St., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

As a part of this work, an analysis of the current state of knowledge regarding the use of additive technology - binder jetting in the production of castings was made. The binder jetting (so-called 3D printing) has become the leading method of sand mold and core production. Within this paper types of molding and core sands with organic and inorganic binders that are and can be used in technology were analyzed. The need to carry out works aimed at developing pro-ecological molding / core sands with inorganic binders and organic binders with reduced harmfulness to the environment dedicated to binder jetting technology was noticed. The influence of technology parameters on the properties of molding / core sands and the properties of cast components was analyzed. It was shown that thanks to the unlimited shapes of the systems obtained with the use of additive technologies, it is possible to influence the rate of heat dissipation through the mold, which positively effects the process of solidification and crystallization of the castings.
Go to article

Bibliography

[1] Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A. & Ul Haq, M.I. (2022). 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 3, 33-42. DOI: 0.1016/j.susoc.2021.09.004.
[2] Shi, Y., Znang, J., Wen, S., Song, B., Yan, C., Wei, Q., Wu, J., Yin, Y., Zhou, J., Chen, R., Wei, Z., Jia, H., Yang, H & Nan, H. (2021). Additive manufacturing and foundry innovation. China Foundry. 18(4), 286-295. DOI: 10.1007/s41230-021-1008-8.
[3] Gawronová, M., Lichý, P., Kroupová, I., Obzina, T., Beňo, Nguyenová, I., Merta, V., Jezierski, J. & Radkovský, F. (2022). Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness. Heliyon. 8(10), 1-10. DOI: 10.1016/j.heliyon.2022.e10751.
[4] Shangguan, H., Kang, J., Deng, C., Hu, Y. & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminum castings. Journal of Material Processing Technology. 250, 247-253. DOI: 10.1016/j.jmatprotec.2017.05.010.
[5] Hawaldar, N. & Zhang, J. (2018) A comparative study of fabrication of sand casting mold using additive manufacturing and conventional proces. International Journal of Advanced Manufacturing Technology. 97(1-4), 1037-1045. DOI: 10.1007/s00170-018-2020-z.
[6] Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017). 3D printing for rapid sand casting - A review. Journal of Manufacturing Processes. 29, 211-220. DOI: 10.1016/j.jmapro.2017.07.017.
[7] Zhang, Z., Wang, L., Zhang, L., Ma, P., Lu, B. & Du, C. (2021). Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength. China Foundry. 18(4), 335-343. DOI: 10.1007/s41230-021-1057-z.
[8] Thiel, J., Ravi, S. & Bryan,t N. (2017). Advancements in materials for three-dimensional printing of molds and cores. International Journal of Metalcasting. 11(1), 3-13. DOI: 10.1007/s40962-016-0082-y.
[9] Mitra, S., Rodríguez de Castro A. & el Mansori, M. (2018). The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 97(1-4), 1241-1251, DOI: 10.1007/s00170-018-2024-8.
[10] Major-Gabryś, K., Hosadyna–Kondracka, M., Polkowska A., Warmuzek M. (2022). Effect of the biodegradable component addition to the molding sand on the microstructure and properties of ductile iron castings. Materials. 15(4), 1-14, DOI: 10.3390/ma15041552.
[11] Major-Gabryś, K. (2019) Environmentally friendly foundry molding and core sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911, DOI: 10.1007/s11664-019-03947-x.
[12] Puzio, S., Kamińska, J., Major-Gabryś, K., Angrecki, M. & Hosadyna-Kondracka, M. (2019). Microwave-hardened moulding sands with hydrated sodium silicate for modified ablation casting. Archives of Foundry Engineering. 19(2), 91-96,
[13] Major-Gabryś, K., Grabarczyk, A. & Dobosz, St.M., (2018). Modification of foundry binders by biodegradable material. Archives of Foundry Engineering. 18(2), 31-44, DOI: 10.24425/122498.
[14] Major-Gabryś, K., Grabarczyk, A., Dobosz, St.M. & Jakubski, J. (2016). New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone. Metalurgija. 55(3), 385-387.
[15] Major-Gabryś, K. (2016). Odlewnicze masy formierskie i rdzeniowe przyjazne dla środowiska. Katowice-Gliwice: Archives of Foundry Engineering. (in Polish)
[16] Major-Gabryś, K., Stachurek, I. & Hosadyna-Kondracka, M. (2022). The influence of biomaterial in a binder composition on biodegradation of waste from furan moulding sands. Archives of Foundry Engineering. 22(2), 17-24, DOI: 10.24425/afe.2022.140.222
[17] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M. & Stachurek, I. (2022). The influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. Archives of Civil Engineering. 68(4), 163-177, DOI: 10.2445/ace.2022.143032.
[18] Major-Gabryś, K., Stachurek, I., Hosadyna-Kondracka, M. & Homa, M. (2022). The influence of polycaprolactone on structural changes of dusts from molding sands with resin-based binder before and after the biodegradation process. Polymers. 14(13), 1-16. DOI: 10.3390/polym14132605.
[19] Snelling, D., Williams, C. & Druschitz, A. (2014). A comparison of binder burnout and mechanical characteristics of printed and chemically sand molds. In 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
[20] Dana, H.R. & el Mansori, M. (2020). Mechanical characterisation of anisotropic silica sand/furan resin compound induced by binder jet 3D additive manufacturing technology. Ceramics International. 46(11), 17867-17880, DOI: 10.1016/j.ceramint.2020.04.093.
[21] Coniglio, N., Sivarupan, T. & el Mansori, M. (2018). Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 94(5-8), 2175-2185. DOI: 10.1007/s00170-017-0861-5.
[22] Sivarupan, T., el Mansori, M., Daly, K., Mavrogordato, M.N. & Pierron, F. (2019) Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography. Rapid Prototyping Journal. 25(2), 404-416. DOI: 10.1108/RPJ-04-2018-0091.
[23] Cheng, Y., Li, Y., Yang, Y., Tang, K., Jhuang, F., L,i K. & Lu, C. (2022). Greyscale printing and characterization of the binder migration pattern during 3D sand mold printing. Additive Manufacturing. 56, 102929. DOI: 10.1016/j.addma.2022.102929.
[24] Vaezi, M. & Chua, C.K. (2011). Effects of layer thickness and binder saturation level parameters on 3D printing proces. International Journal of Advanced Manufacturing Technology. 53(1-4), 275-284. DOI: 10.1007/s00170-010-2821-1.
[25] Bryant, N., Frush, T., Thiel, J., MacDonald, E. & Walker, J. (2021). Influence of machine parameters on the physical characteristics of 3D-printed sand molds for metal casting. International Journal of Metalcasting. 15(2), 361-372. DOI: 10.1007/s40962-020-00486-3.
[26] Hackney, P.M. & Wooldridge, R. (2017). Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototypin Journal. 23(1), 7-15. DOI: 10.1108/RPJ-08-2014-0101.
[27] Wang, Y., long Yu, R., kui Yin, S., Tan, R. & chun Lou, Y. (2021). Effect of gel time of 3D sand printing binder system on quality of sand mold/core. China Foundry. 18(6), 581-586. DOI: 10.1007/s41230-021-1085-8.
[28] Sama, S.R., Badamo, T. & Manogharan, G. (2020). Case studies on integrating 3D sand-printing technology into the production portfolio of a sand-casting foundry. International Journal of Metalcasting. 14(1), 12-24. DOI: 10.1007/s40962-019-00340-1.
[29] Triantaphyllou, A., Giusca, C., Macaulay, G., Reorig, F., Hoebel, M., Leach, R., Tomita, B. & Milne, K. (2015). Surface texture measurement for additive manufacturing. Surfdace Topografy: Metrology and Properties. 3(2), 024002. DOI: 10.1088/2051-672X/3/2/024002.
[30] Hartmann, C., van den Bosch, L., Spiegel, J., Rumschöttel, D. & Günther, D. (2022). Removal of stair-step effects in binder jetting additive manufacturing using grayscale and dithering-based droplet distribution. Materials. 15(11), 1-17. DOI: 10.3390/ma15113798.
[31] Deng, C., Kang, J., Shangguan, H., Huang, T., Zhang, X., Hu, Y. & Huang, T. (2018). Insulation effect of air cavity in sand mold using 3D printing technology. China Foundry. 15(1), 37-43. DOI: 10.1007/s41230-018-7243-y.
[32] Shangguan, H., Kang, J., Yi, J., Zhang, X., Wang, X., Wang, H. & Huang, T. (2018). The design of 3D-printed lattice-reinforced thickness-varying shell molds for castings. Materials. 11(4), 1-10. DOI: 10.3390/ma11040535.
[33] Wei, X., Wan, Y. & Liang, X. (2022). Effect of hollow core on cooling temperature in 3D printing. Journal of Physics: Conference Series. Institute of Physics. 2396, 012037, 1-9. DOI: 10.1088/1742-6596/2396/1/012037.
[34] ben Saada, M. & el Mansori, M. (2021). Assessment of the effect of 3D printed sand mold thickness on solidification process of AlSi13 casting alloy. The International Journal of Advanced Manufacturing Technology. 114, 1753-1766. DOI: 10.1007/s00170-021-06999-3.
[35] Sama, S.R., Wang, J. & Manogharan, G. (2018). Non-conventional mold design for metal casting using 3D sand-printing. Journal of Manufacturing Processes. 34, 765-775. DOI: 10.1016/j.jmapro.2018.03.049.
[36] Sama, S.R., Badamo, T., Lynch, P. & Manogharan, G. (2019). Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing. 25, 563-578. DOI: 10.1016/j.addma.2018.12.009.
[37] Martinez, D., King, P., Sama, S.R., Sim, J., Toykoc, H. & Manogharan, G. (2023). Effect of freezing range on reducing casting defects through 3D sand-printed mold designs. International Journal of Advanced Manufacturing Technology. 126(1-2), 569-581. DOI: 10.1007/s00170-023-11112-x.
[38] Shuvo, M.M. & Manogharan, G. (2021). Novel riser designs via 3D sand printing to improve casting performance. Procedia Manufacturing. 53, 500-506. DOI: 10.1016/j.promfg.2021.06.052.
[39] Snelling, D., Williams, C. & Druschitz, A. (2019). Mechanical and material properties of castings produced via 3D printed mold. Additive Manufacturing. 27, 199-207, DOI: 10.1016/j.addma.2019.03.004.
[40] Hernández, F. & Fragoso, A. (2022). Fabrication of a stainless-steel pump impeller by integrated 3D sand printing and casting: mechanical characterization and performance study in a chemical plant. Applied Sciences (Switzerland). 12(7), 3539. DOI: 10.3390/app12073539.
[41] Szymański, P. & Borowiak, M. (2019). Evaluation of castings surface quality made in 3D printed sand moulds using 3DP technology. Lecture Notes in Mechanical Engineering. 201-212. DOI: 10.1007/978-3-030-16943-5_18.
[42] Skorulski, G. (2016). 3DP Technology for the manufacture of molds for pressure casting. Archives of Foundry Engineering. 16(3), 9-102. DOI: 10.1515/afe-2016-0058.
[43] Na, O., Kim, K. & Lee. H. (2021). Printability and setting time of csa cement with na2 sio3 and gypsum for binder jetting 3D printing. Materials. 14(11), 1-18. DOI: 10.3390/ma14112811.
[44] Zhang, L., Yang, X., Ran, S. Zhang, L., Hu, C. & Wang, H. (2023). Water-soluble sand core made by binder jetting printing with the binder of potassium carbonate solution. International Journal of Metalcasting. 1-12. DOI: 10.1007/s40962-022-00940-4.
[45] Goto, I., Kurosawa, K. & Matsuki, T. (2022). Effect of 3D-printed sand molds on the soundness of pure copper castings in the vicinity of as-cast surfaces. Journal of Manufacturing Processess. 77, 329-338. DOI: 10.1016/j.jmapro.2022.03.020.
[46] Castro-Sastre, M.Á., García-Cabezón, C., Fernández-Abia, A.I., Martín-Pedrosa, F. & Barreiro, J. (2021). Comparative study on microstructure and corrosion resistance of Al-Si alloy cast from sand mold and binder jetting mold. Metals (Basel). 11(9), 1421. DOI: 10.3390/met11091421.
[47] Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D., Schmidová, E. (2018). Role of chemical composition in corrosion of aluminum alloys. Metals. 8(8), 581. DOI: 10.3390/met8080581.
[48] Samuel, A.M., Doty, H.W., Valtierra, S. & Samuel, F.H. (2018). βAl5FeSi phase platelets-porosity formation relationship in A319.2 type alloys. International Journal of Metalcasting 12, 55-70. DOI: 10.1007/s40962-017-0136-9.
[49] Zheng, J., Chen, A., Yao, J., Ren, Y., Zheng, W., Lin, F., Shi, J., Guan, A. & Wang, W. (2022). Combination method of multiple molding technologies for reducing energy and carbon emission in the foundry industry. Sustainable Materials and Technologies. 34, e00522. DOI: 10.1016/j.susmat.2022.e00522.
[50] Kang, J. & Ma, Q. (2017). The role and impact of 3D printing technologies in casting. China Foundry. 14(3), 157-168. DOI: 10.1007/s41230-017-6109-z.
Go to article

Authors and Affiliations

Dawid Halejcio
1
ORCID: ORCID
Katarzyna Major-Gabryś
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering Department of Moulding Materials, Mould Technology and Non-ferrous Metals al. A. Mickiewicza 30, 30-059 Krakow

This page uses 'cookies'. Learn more