Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As the amount of high-capacity secondary battery waste gradually increased, waste secondary batteries for industry (high-speed train & HEV) were recycled and materialization studies were carried out. The precipitation experiment was carried out with various conditions in the synthesis of LiNi0.6Co0.2Mn0.2O2 material using a Taylor reactor. The raw material used in this study was a leaching solution generated from waste nickel-based batteries. The nickel-cobalt-manganese (NCM) precursor was prepared by the Taylor reaction process. Material analysis indicated that spherical powder was formed, and the particle size of the precursor was decreased as the reaction speed was increased during the preparation of the NCM. The spherical NCM powder having a particle size of 10 µm was synthesized using reaction conditions, stirring speed of 1000 rpm for 24 hours. The NCM precursor prepared by the Taylor reaction was synthesized as a cathode material for the LIB, and then a coin-cell was manufactured to perform the capacity evaluation.
Go to article

Bibliography

[1] A.M. Bernardes, D.C.R. Espinosa, J.A.S. Tenorio, J. Power Sour. 130, 291 (2004).
[2] D.W. Kim, I. J. Park, N.K. Ahn, H.C. Jung, S.H. Jung, J.Y. Choi, D.H. Yang, J. of Kor. Inst. of Res. Rec. 27 (4), 36 (2018).
[3] D.H. Han, I.J. Park, M.J. Kim, D.W. Kim, H.C. Jung, Kor. J. Met. Mater. 57 (6), 360 (2019).
[4] W.S. Kim, J. Chem. Eng. Jpn. 47, 115 (2014).
[5] R. Schmuch, V. Siozios, M. Winter, T. Placke, Mat. Matters 15, 2 (2020).
Go to article

Authors and Affiliations

Hang-Chul Jung
1
ORCID: ORCID
Deokhyun Han
1
ORCID: ORCID
Dae-Weon Kim
1
ORCID: ORCID
Byungmin Ahn
2
ORCID: ORCID

  1. Institute for Advanced Engineering (IAE), Yongin, Korea
  2. Ajou University, Department of Materials Science and Engineering and Department of Energy Systems Research, 206 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
Download PDF Download RIS Download Bibtex

Abstract

A novel process to recover lithium and manganese oxides from a cathode material (LiMn2O4) of spent lithium-ion battery was attempted using thermal reaction with hydrogen gas at elevated temperatures. A hydrogen gas as a reducing agent was used with LiMn2O4 powder and it was found that separation of Li2O and MnO was taken place at 1050°C. The powder after thermal process was washed away with distilled water and only lithium was dissolved in the water and manganese oxide powder left behind. It was noted that manganese oxide powder was found to be 98.20 wt.% and the lithium content in the solution was 1,928 ppm, respectively.
Go to article

Bibliography

[1] M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Lithium insertion into manganese spinels, Elsevier 18, 461-472 (1983).
[2] G . Nazri, G. Pistoia, Lithium batteries: science and Technology; Springer: New York City, United States, (2003).
[3] S .-Y. Sun, X. Song, Q.-H. Zhang, J. Wang, J.G . Yu, Adsorption 17 (5), 81 (2011).
[4] M.J. Ariza, D.J. Jones, J. Rozière, R. Chitrakar, K. Ooi, Chem. Mater. 18 (7), 1885 (2006).
[5] M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 19 (2), 179 (1984).
[6] Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Langmuir 8 (7), 1861-1867 (1992).
[7] Q.-H. Zhang, S.-P. Li, S.-Y. Sun, X.-S. Yin, J.G . Yu, Chem. Eng. Sci. 65 (1), 169-173 (2010).
[8] Q.-H. Zhang, S. Sun, S. Li, H. Jiang, J.-G. Yu, Chem. Eng. Sci. 62 (18-20) 4869-4874 (2007).
[9] Q. Feng, Y. Higashimoto, K. Kajiyoshi, K. Yanagisawa, J. Mater. Sci. Lett. 20 (3), 269-271 (2001).
[10] C . Özgür, Solid State Ionics 181 (31-32), 1425 (2010).
[11] L. Li, W. Qu, F. Liu, T. Zhao, X. Zhang, R. Chen, F. Wu, Appl. Surf. Sci. 315, 59 (2014).
[12] R . Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Chem. Lett. 41 (12), 1647 (2012).
[13] R . Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (9), 2054 (2001).
[14] L. Liu, H. Zhang, Y. Zhang, D. Cao, X. Zhao, Colloids Surf. A: Physiochem. Eng. Aspects 468, 280 (2015).
[15] X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Hydrometallurgy 110, (1-4), 99 (2011).
[16] R . Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater. 12 (10), 3151-3157 (2000).
[17] J.-L. Xiao, S.-Y. Sun, J. Wang, P. Li, J.-G. Yu, Ind. Eng. Chem. Res. 52 (34), 11967-11973 (2013).
[18] S .-Y. Sun, J.-L. Xiao, J. Wang, X. Song, J.-G. Yu, Ind. Eng. Chem. Res. 53 (40), 15517 (2014).
[19] R . Chitrakar, K. Sakane, A. Umeno, S. Kasaishi, N. Takagi, K. Ooi, J. Solid State Chem. 169 (1), 66 (2002).
[20] X. Yang, H. Kanoh, W. Tang, K. Ooi, J. Mater. Chem. 10 (8), 1903 (2000).
[21] K . Ooi, Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, T. Nakazato, Chem. Eng. J. 288, 137 (2016).
[22] H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim, K.-S. Chung, Chem. Eng. J. 234, 16 (2013).
[23] T . Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.-J. Hong, G.-W. Lee, Y.-K. Han, Y.S. Huh, K.-S. Chung, Ind. Eng. Chem. Res. 55 (26), 7218 (2016).
[24] K .S. Chung, J.C. Lee, E.J. Kim, K.C. Lee, Y.S. Kim, K. Ooi, Mater. Sci. Forum 449452, 277 (2004).
[25] Y . Miyai, K. Ooi, T. Nishimura, J. Kumamoto, Bull. Soc. Sea Water Sci., Jpn. 48 (6), 411 (1994).
[26] J.C. Hunter, J. Solid State Chem. 39, 142 (1981).
[27] X. Zeng, J. Li, N. Singh, Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology 44, 1129-1165 (2014).
[28] P. Zhang, et al., Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47, 259-271 (1998).
[29] J.G. Kang et al. Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy 100, 168-171 (2010).
[30] M.J. Lain, Recycling of lithium ion cells and batteries. Journal of power sources, 97-98, 736-738 (2001).
[31] S .M Shin, et al., Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79, 172-181 (2005).
[32] A. Chagnes, B. Pospiech, A brief review on hydrometallurgical technologies for recycling spent lithium‐ion batteries. Chemical Technology and Biotechnology 88, 1191-1199 (2013).
[33] T .W Gwon, C.M. Yang, Y.G. Park, Y.G. Jho, B.H. Lim, Phase Transitions of LiMn2O4 on CO2 Decomposition, Korea Chemical Society 20, 33-44 (2003).
Go to article

Authors and Affiliations

Jei-Pil Wang
1

  1. Pukyong National University, Department of Metallurgical Engineering, Busan, Republic of Korea

This page uses 'cookies'. Learn more