Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In view of their advantageous properties (high hardness, good frictional wear resistance, chemical and thermal stability at elevated temperatures), cubic boron nitride (cBN) and tungsten carbide (WC) are commonly used for the fabrication of cutting tools. The composites were consolidated at a temperature of 1100°C under a load of 100 MPa for 10 min. The density of the thus produced material was close to the theoretical value (about 99.6%), and the hardness HV30 was about 1950. The phases identified in the composite were WC, Co, and cBN. Microstructural examinations revealed that numerous trans-crystalline fractures through the cBN particles occurred in the material.

The present study is concerned with the wear of the WCCo and WCCo/cBN composites. Comparative tribological examinations were performed in a tribological tester using the ball-on-disc arrangement under the conditions of dry friction. The counterspecimens were steel and Al2O3 balls. The tests were conducted under a unit load of 10 N. After the tests, the surface of the samples was examined to describe the wear mechanisms active in various composite materials.

Go to article

Authors and Affiliations

J. Wachowicz
T. Truszkowski
M. Rosiński
M. Ossowski
G. Skrabalak
M. Cyrankowski
Download PDF Download RIS Download Bibtex

Abstract

Research in additive manufacturing of tungsten carbide-cobalt has intensified over the last few years due to the increasing need for products designed using topology optimisation and multiscale structures (lattice). These products result in complex shapes and contain inner structures that are challenging to produce through conventional techniques, thus involving high costs. The present work addresses this problem using a two-step approach to 3D print parts with complex shapes and internal structures by employing indirect selective laser sintering (SLS) and tungsten carbide-cobalt sintering. The paper takes further our research in this field [1] to improve the part density by using high bulk density tungsten carbide-cobalt powders. Mechanically mixing tungsten carbide-cobalt with the sacrificial binder, polyamide 12, results in a homogenous powder successfully used by the selective laser sintering process to produce green parts. By further processing, the green parts through a complete sintering cycle, an average final part density of 11.72 g/cm3 representing more than 80% of the theoretical density is achieved.
Go to article

Authors and Affiliations

R.V. Gădălean
1 2
ORCID: ORCID
O.-D. Jucan
3
ORCID: ORCID
H.F. Chicinaş
2 3
ORCID: ORCID
N. Bâlc
1
ORCID: ORCID
C.O. Popa
3
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Department of Manufacturing Engineering, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. Gühring Romania, 32 Constructorilor Street, 407035 Apahida, Romania
  3. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105, Muncii Avenue, 400641 Cluj-Napoca, Romania
Download PDF Download RIS Download Bibtex

Abstract

WC-8Co cemented carbide was prepared by a high-temperature liquid phase sintering in argon at 5-200 Pa. Three microtextured grooves with a spacing of 500, 750, and 1000 μm were prepared on the surface of WC-8Co cemented carbide. TiAlCrSiN multi-element hard coating was deposited on the WC-8Co cemented carbide microtextured surface with multi-arc ion plating technology. The Vickers hardness and fracture toughness of coated and uncoated WC-8Co cemented carbide with or without a microtextured surface were investigated. The effect of different microtextured spacing on the interface bonding strength of the TiAlCrSiN coating was analyzed. The results show that with the reduction of the microtextured spacing, the Vickers hardness of the cemented carbide slightly decreases, and the fracture toughness slightly increases. The microtextured surface can improve the interface bonding strength between the coating and the substrate. The smaller the microtextured spacing, the larger the specific surface area and the higher the surface energy, so the interface bonding strength between the coating and the substrate increases.
Go to article

Authors and Affiliations

ManFeng Gong
1 2
GuangFa Liu
1 2
Meng Li
1 3
XiaoQun Xia
1
Lei Wang
1
ORCID: ORCID
JianFeng Wu
1 2
ShanHua Zhang
1 2
Fang Mei
1

  1. Lingnan Normal University, School of Mechatronics Engineering, Zhanjiang 524048, China
  2. Guangdong Ocean University, School of Mechanical Engineering, Zhanjiang 524088, China
  3. Northwestern Polytechnical University, School of Materials Science and Engineering, Xian 710072, China
Download PDF Download RIS Download Bibtex

Abstract

The research aims to develop a novel and safer milling route to produce Hard Metals. Considering the risks associated with milling fine particles under organic solvents, especially the increased fire and explosion risks, we propose milling under aqueous milling media to diminish the risks associated with fire hazards, while maintaining the oxidation level at a minimum. The samples were sintered in an industrial sintering oven under vacuum at 1380°C subsequent to milling and drying. The characterisation of the materials has been done by X-ray diffraction, scanning electron microscopy, particle size analysis, optical microscopy, and a magnetometer. The obtained results indicate that appropriate properties of the powders after milling and drying as well as the desired biphasic (Co-WC) phases were obtained after sintering, thus proving the feasibility of such a route and diminishing specific fire hazards.
Go to article

Authors and Affiliations

H.-F. Chicinas
1 2
ORCID: ORCID
L.-E. Marton
1 2
ORCID: ORCID
C.-O. Popa
1
ORCID: ORCID

  1. Technical University of Cluj-Napoca, Materials Science and Engineering Department, 103-105 Muncii Avenue, 400641 Cluj-Napoca, Romania
  2. SC Gühring SRL, 32 Constructorilor Street, 407035 Apahida, Romania
Download PDF Download RIS Download Bibtex

Abstract

In this study, a novel composite was fabricated by adding the Hafnium diboride (HfB2) to conventional WC-Co cemented carbides to enhance the high-temperature properties while retaining the intrinsic high hardness. Using spark plasma sintering, high density (up to 99.4%) WC-6Co-(1, 2.5, 4, and 5.5 wt. %) HfB2 composites were consolidated at 1300℃ (100℃/min) under 60 MPa pressure. The microstructural evolution, oxidation layer, and phase constitution of WC-Co-HfB2 were investigated in the distribution of WC grain and solid solution phases by X-ray diffraction and FE-SEM. The WC-Co-HfB2 composite exhibited improved mechanical properties (approximately 2,180.7 kg/mm2) than those of conventional WC-Co cemented carbides. The high strength of the fabricated composites was caused by the fine-grade HfB2 precipitate and the solid solution, which enabled the tailoring of mechanical properties.
Go to article

Bibliography

[1] J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, J. Alloys Compd. 786, 1-10 (2019).
[2] J. Garcia, V.C. Cipres, A. Blomqvist, B. Kaplan, Int. J. Refract. Met. Hard Mater. 80, 40-68 (2019).
[3] S.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ceram. Int. 46 (16), 25106-25112 (2020).
[4] M .D. Brut, D. Tetard, C. Tixier, C. Faure, E. Chabas, 10th International Conference of the European Ceramic Society, Berlin, 1315-1320 (2007).
[5] A.K. Kumar, K. Kurokawa, Books: Tungsten carbide – Processing and applications, chapter 2: Spark plasma sintering of ultrafine WC powders: A combined kinetic and microstructural study (2012).
[6] R .G. Crookes, B. Marz, H. Wu, Mater. Des. 187, 108360 (2020).
[7] C. Bargeron, R. Benson, R. Newman, A.N. Jette, T.E. Phillips, Mater. Sci. (1993).
[8] C. Bagnall, J. Capo, W.J. Moorhead, Metallography Microstructure Analysis 7, 661-679 (2018).
Go to article

Authors and Affiliations

Hyun-Kuk Park
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Ju-Hun Kim
1 2
ORCID: ORCID
Sung-Kil Hong
2
ORCID: ORCID
Jeong-Han Lee
1 2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil, Buk-gu, Gwan g-Ju, 61012, Korea
  2. Chonnam National University, Materials Science & Engineering, 77, Yong-bongro, Buk-gu, Gwan g-ju, 61186, Korea
Download PDF Download RIS Download Bibtex

Abstract

WC-Co cemented carbides were consolidated using spark plasma sintering in the temperature 1400°C with transition metal carbides addition. The densification depended on exponentially as a function of sintering exponent. Moreover, the secondary (M, W)Cx phases were formed at the grain boundaries of WC basal facet. Corresponded, to increase the basal facets lead to the plastic deformation and oriented grain growth. A higher hardness was correlated with their grain size and lattice strain. We suggest that this is due to the formation energy of (M, W)Cx attributed to inhibit the grain growth and separates the WC/Co interface.
Go to article

Bibliography

[1] A.I. Gusev, A.A. Remple, A.J. Magerl, Disorder and order in strongly non-stoichiometric compounds: transition metal carbides, nitrides and oxide. Berlin: Springer; 607 (2001).
[2] T.A. Fabijanic, M. Kurtela, I. Skrinjaric, J. Potschke, M. Mayer, Metals 10, 224 (2020).
[3] X. Liu, X. Song, H. Wang, X. Liu, F. Tang, H. Lu, Acta Materialia 149, 164-178 (2018).
[4] H.O. Andren, Microstructures of cemented carbides, Mater. Des. 22, 491-498 (2001).
[5] C. Barbatti, J. Garcia, P. Brito, A.R. Pyzalla, Int. J. Refract. Met. Hard Mater. 27, 768-776 (2009).
[6] G .R. Antis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (9), 533-538 (1981).
[7] Y.V. Milman, J. Superhard Mater. 36, 65-81 (2014).
[8] M . Christensen, G. Wahnstrom, Acta Materialia 52 (8), 2199-2207 (2004).
[9] Y . Peng, H. Miao, Z. Peng, Int. J. Refract. Met. Hard Mater. 39, 78-89 (2013).
Go to article

Authors and Affiliations

Jeong-Han Lee
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Hyun-Kuk Park
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil , Buk-gu, Gwang-Ju,61012, Korea

This page uses 'cookies'. Learn more