Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to the method facilitating the diagnostics of dynamic faults in networks of interconnection in systems-on-chips. It shows how to reconstruct the erroneous test response sequence coming from the faulty connection based on the set of signatures obtained as a result of multiple compaction of this sequence in the MISR register with programmable feedback. The Chinese reminder theorem is used for this purpose. The article analyzes in detail the various hardware realizations of the discussed method. The testing time associated with each proposed solution was also estimated. Presented method can be used with any type of test sequence and test pattern generator. It is also easily scalable to any number of nets in the network of interconnections. Moreover, it supports finding a trade-off between area overhead and testing time.
Go to article

Authors and Affiliations

Tomasz Garbolino
Download PDF Download RIS Download Bibtex

Abstract

A new method of lossless Secure Data Aggregation for Wireless Sensor Network is presented. Secure Data Aggregation is achieved using the popular Chinese Remainder theorem. Here, an ‘Augmented Chinese Remainder System’ is introduced that incorporates additional features to enforce a higher level of security to the aggregated data. The scheme provides inbuilt signature verification and eliminates the need for separate data validation algorithms. The method achieves data integrity and authentication simultaneously in addition to lossless data aggregation for the data forwarded from the Cluster Head to the Base Station. The aggregate contains the entire individual data from sensors in the encrypted form and the receiver deaggregates it to get the original data in full without any loss. The Augmented Chinese Remainder System can be extended to secure Multi-level Data Aggregation for WSN.
Go to article

Authors and Affiliations

Sanu Thomas
1
Thomaskutty Mathew
2

  1. Faculty of School of Technology and Applied Science, Pullarikkunnu Campus, Mallooseery, Kottayam, Kerala, India
  2. Faculty of School of Science, GITAM University, Bengaluru, Karnataka, India

This page uses 'cookies'. Learn more