Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Cold-formed structure connections utilizing gusset plates are usually semi-rigid. This paper investigates the behaviours of rectangular gusset plates in cold-formed connections of elements whose columns and beams are made with lipped back-to-back C-sections. Methods of calculating strength and stiffness are necessary for such semi-rigid joints. The main task of this paper is to determine a method capable of calculating these characteristics. The proposed analytical method could then be easily adapted to the component method that is described in part 1993-1-8 of the Eurocode. This method allows us to calculate both the strength and stiffness of rectangular gusset plates, assuming that the joint deforms only in plane. This method of design moment resistance calculation was presented taking into account that an entire cross-section shall reach its yield stress. A technique of stiffness calculation was presented investigating the sum of deformations acquired at the bending moment and from shear forces which are transmitted from each beam bolt group. Calculation results according to the suggested method show good agreement of laboratory experimental results of specimens with numerical simulations. Two specimens of beam-to-column connections were tested in the laboratory. Lateral supports were used on the specimens to prevent lateral displacements in order to better investigate the behaviour of the rectangular gusset plate in plane. Experiments were simulated by modelling rectangular gusset plates using standard finite element software ANSYS Workbench 14.0. Three-dimensional solid elements were used for modelling and both geometric and material nonlinear analysis was performed.

Go to article

Authors and Affiliations

Ž Bučmys
A. Daniūnas
Download PDF Download RIS Download Bibtex

Abstract

The main aim of the study is an assessment of models suitability for steel beams made of thin-walled cold-formed sigma profiles with respect to different numerical descriptions used in buckling analysis. The analyses are carried out for the sigma profile beam with the height of 140 mm and the span of 2.20 m. The Finite Element (FE) numerical models are developed in the Abaqus program. The boundary conditions are introduced in the formof the so-called fork support with the use of displacement limitations. The beams are discretized using S4R shell finite elements with S4R linear and S8R quadratic shape functions. Local and global instability behaviour is investigated using linear buckling analysis and the models are verified by the comparison with theoretical critical bending moment obtained from the analytical formulae based on the Vlasow beam theory of the thin-walled elements. In addition, the engineering analysis of buckling is carried out for a simple shell (plate) model of the separated cross-section flange wall using the Boundary Element Method (BEM). Special attention was paid to critical bending moment calculated on the basis of the Vlasov beam theory, which does not take into account the loss of local stability or contour deformation. Numerical shell FE models are investigated, which enable a multimodal buckling analysis taking into account interactive buckling. The eigenvalues and shape of first three buckling modes for selected numerical models are calculated but the values of critical bending moments are identified basing on the eigenvalue obtained for the first buckling mode.
Go to article

Authors and Affiliations

Katarzyna Rzeszut
1
ORCID: ORCID
Ilona Szewczak
2
ORCID: ORCID
Patryk Różyło
3
ORCID: ORCID
Michał Guminiak
4
ORCID: ORCID

  1. Poznan University of Technology, Institute of Building Engineering, Marii Skłodowskiej-Curie 5, 60-965 Poznan
  2. Lublin University of Technology, Faculty of Civil Engineering and Architecture, ul. Nadbystrzycka 38D,20–618 Lublin, Poland
  3. Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 38 D, 20–618 Lublin, Poland
  4. Poznan University of Technology, Institute of Structural Analysis, Marii Skłodowskiej-Curie 5, 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

Detailed investigation of the effect of the number of end-panel studs on the seismic properties of light-steel shear-panel braces in cold-formed steel frames and in particular the associated response modifi cation coeffi cients (R) factor, are presented in this paper. A total of 6 full-scale 1200×2400 mm specimens are considered, and the responses investigated under a standard cyclic loading regime. Of particular interest are the specimens’ maximum lateral load capacity and deformation behavior as well as a rational estimation of the seismic response modifi cation factor. The study also looks at the failure modes of the system and investigates the main factors contributing to the ductile response of the tested shear-panel braces in order to suggest improvements so that braces respond plastically with a signifi cant drift and without any risk of brittle failure, such as connection failure or stud buckling.

Go to article

Authors and Affiliations

Mohammad Reza Javaheri Tafti
Farhad Behnamfar
Download PDF Download RIS Download Bibtex

Abstract

Joints in cold-formed steel framing structures are usually designed as bolted lap type ones with a gusset plate. Unlike the end-plate joints in hot-rolled structures, the load in such joints is transferred through shearing of the bolts and bearing of the material. The prediction of their structural properties may be problematic in viewof unfavourable influence of the hole clearance and hole ovalization resulting from low bearing resistance of thin walls. A few experimental programmes showed that these issues lead to a different behaviour of the whole joint comparing to common end plate type. These concerns may be particularly important for joints under variable loading, which are prone to deterioration of structural properties. The testing programme conducted by the authors was focused on their behaviour under monotonic and cyclic loading with attention to a potential drop of resistance and stiffness. Monotonic tests revealed quite similar course of the joints’ response. In view of high deformability of the specimens at the intermediate stage of each monotonic test, plastic moment resistances of joints were associated with the initial part of the moment-rotation curves and were multiple times lower than maximum moments obtained in the experiments. The quantities of deterioration of structural properties were determined based on cyclic tests. Drop of resistance and stiffness was observed for several levels of loading range, but the trend of decrease varied for each property. Application of the DIC technique allowed one to identify qualitatively and quantitatively the sources of joint deformability.
Go to article

Authors and Affiliations

Rafał Budzinski
1
ORCID: ORCID
Lucjan Ślęczka
1
ORCID: ORCID

  1. RzeszowUniversity of Technology, Faculty of Civil and Environmental Engineering and Architecture, Al. Powstanców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more