Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 298
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The preliminary stage of asphalt mixture production involves the drying and dedusting of coarse aggregates. The most common types of coarse aggregates used are limestone and basalt. In the process of drying and dedusting the dryer filter accumulates large quantities of waste in the form of mineral powder.

This paper introduces an investigation into limestone powder waste as a potential microfiller of polymer composites. Physical characteristics such as the granulation the of powder collected from the filter - in terms of the season of its collection and the type of input materials used - were analysed. A scanning electron microscope (SEM) was used for the investigation described within this paper. The obtained results were compared against those of other materials which can be used as polymer composites microfillers.

Go to article

Authors and Affiliations

M. Kępniak
P. Woyciechowski
W. Franus
Download PDF Download RIS Download Bibtex

Abstract

Fabrication and microstructure of the AlSi11 matrix composite containing 10 % volume fraction of CrFe30C8 particles were presented in this paper. Composite suspension was manufactured by using mechanical stirring. During stirring process the temperature of liquid metal, time of mixing and rotational speed of mixer were fixed. After stirring process composite suspension was gravity cast into shell mould. The composites were cast, applying simultaneously an electromagnetic field. The aim of the present study was to determine the effect of changes in the frequency of the current power inductor on the morphology of the reinforcing phase in the aluminum matrix. The concept is based on the assumption that a chromium-iron matrix of CrFe30C8 particles dissolves and residual carbide phases will substantially strengthen the composite. The microstructure and interface structure of the AlSi11/CrFe30C8 composite has been studied by optical microscopy, scanning microscopy and X-ray diffraction.

Go to article

Authors and Affiliations

A. Dulęba
M. Cholewa
D. Scelina
Download PDF Download RIS Download Bibtex

Abstract

The aim of research was the elaboration of the synthesis of new organic monomer applicable in gelcasting. The substance named 3,4-di-acryloyl-D-mannitol which contains two acryloyl groups and four hydroxyl groups in its molecule has been synthesized. The monomer has been then applied in the preparation of Al2O3-ZrO2 composites by gelcasting and subsequent sintering. Rheological properties of ceramic suspensions have been examined, as well as the properties of green and sintered bodies. SEM observations allowed to determine the distribution of zirconia grains in alumina matrix. Density, Vickers hardness and fracture toughness of ZTA composites have been measured. The new monomer, that is diacryloyl derivative of mannitol, is less sensitive to the oxygen inhibition than commonly used in gelcasting and commercially available 2-hydroxyethyl acrylate.
Go to article

Authors and Affiliations

A. Antosik
P. Wiecińska
E. Pietrzak
D. Kubica
A. Sakowicz
N. Prokurat
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as

the method of its high-pressure die casting and the measurement results concerning the castability of the obtained composite. Composite

castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and

various injection gate width values. There were found the regression equations describing the change of castability of the examined

composite as a function of pressure die casting process parameters. The conclusion gives the analysis and the interpretation of the obtained

results.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
M. Nadolski
Download PDF Download RIS Download Bibtex

Abstract

The durability characteristics of Engineered Cementitious Composites (ECC) with various fibers such as polypropylene and glass were investigated in view of developing composites with high resistance to cracking. ECC offer large potential for durable civil infrastructure due to their high tensile strain capacity and controlled micro-crack width. In this study, fibre volume fractions (0.5%, 1%, 1.5%, and 2%) of both polypropylene and glass fibers varied and durability measures such as a rapid chloride penetration test, sorptivity, water absorption, acid attack, and sulphate attack were measured. Increasing the fiber content up to 1.5% improved the durability properties of ECC. The test results indicate that the glass fiber-reinforced Engineered Cementitious Composites have better durability characteristics than polypropylene fiber-reinforced ECC.

Go to article

Authors and Affiliations

S. Ranjith
R. Venkatasubramani
V. Sreevidya
Download PDF Download RIS Download Bibtex

Abstract

Multiferroic composites are very promising materials because of their applicability because the magnetoelectric effect occurs in them. The subject of the study were two multiferroic ceramic composites: leaded obtained from powder of the composition PbFe0.5Nb0.5O3 and ferrite powder of the composition Ni0.64Zn0.36Fe2O4 and unleaded which was obtained from the powder of the composition BaFe0.5Nb0.5O3 and the same ferrite powder Ni0.64Zn0.36Fe2O4. For the both multiferroic materials the following studies were conducted: SEM, BSE, EDS, XRD and the temperature dependence of dielectric constant ε(T). Using the previously developed method of calculating the magnetoelectric coupling factor (g), based on dielectric measurements, the magnitude of the magnetoelectric effect in the multiferroic composites was determined.
Go to article

Authors and Affiliations

J.A. Bartkowska
D. Bochenek
P. Niemiec
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the mechanical properties of a material fabricated from commercially available metal powder mixtures designed for

use as a metal matrix of diamond impregnated composites. The mixtures with the catalogue numbers CSA and CSA800 provided by a

Chinese producer are suitable for experimental laboratory testing. The specimens were fabricated in a graphite mould using hot pressing.

The material was tested for density, porosity, hardness, and tensile strength under static loading. A scanning electron microscope (SEM)

was used to analyze the microstructure and cleavage fracture of broken specimens. It was essential to determine how the chemical

composition and the fabrication process affected the microstructure and properties of the material. The properties of the sinters were

compared with those of hot pressed specimens fabricated from sub-micron size cobalt powder (Cobalt SMS). Although the as-consolidated

material is inferior to cobalt, it displays a favourable combination of hardness, yield strength and ductility, and seems to have a great

potential for moderate and general purpose applications.

Go to article

Authors and Affiliations

J. Borowiecka-Jamrozek
J. Lachowski
Download PDF Download RIS Download Bibtex

Abstract

The measurement results concerning the abrasive wear of AlSi11-SiC particles composites are presented in paper. The method of

preparing a composite slurry composed of AlSi11 alloy matrix and 10, 20% vol.% of SiC particles, as well as the method of its highpressure

die casting was described. Composite slurry was injected into metal mould of cold chamber pressure die cast machine and

castings were produced at various values of the piston velocity in the second stage of injection, diverse intensification pressure values, and

various injection gate width values. Very good uniform arrangement of SiC particles in volume composite matrix was observed and these

results were publicated early in this journal. The kinetics of abrasive wear and correlation with SiC particles arrangement in composite

matrix were presented. Better wear resistance of composite was observed in comparison with aluminium alloy. Very strong linear

correlation between abrasive wear and particle arrangement was observed. The conclusion gives the analysis and the interpretation of the

obtained results.

Go to article

Authors and Affiliations

Z. Konopka
A. Pasieka
Download PDF Download RIS Download Bibtex

Abstract

The method of pressure die casting of composites with AlSi11 alloy matrix reinforced with 10 vol. % of SiC particles and the analysis of the distribution of particles within the matrix is presented. The composite castings were produced at various values of the piston velocity in the second stage of injection, at diverse intensification pressure values, and various injection gate width values. The distribution of particles over the entire cross-section of the tensile specimen is shown. The index of distribution was determined on the basis of particle count in elementary measuring fields. The regression equation describing the change of the considered index was found as a function of the pressure die casting parameters. The conclusion presents an analysis of the obtained results and their interpretation.
Go to article

Authors and Affiliations

A. Pasieka
Z. Konopka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as

the method of its high-pressure die casting and the measurement results concerning the tensile strength, the yield point, the elongation and

hardness of the obtained composite. Composite castings were produced at various values of the piston velocity in the second stage of

injection, diverse intensification pressure values, and various injection gate width values. There were found the regression equations

describing the change of mechanical properties of the examined composite as a function of pressure die casting process parameters. The

conclusion gives the analysis and the interpretation of the obtained results.

Go to article

Authors and Affiliations

Z. Konopka
A. Pasieka
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with computer modelling of the retention of a synthetic diamond particle in a metallic matrix produced by powder

metallurgy. The analyzed sintered powders can be used as matrices for diamond impregnated tools. First, the behaviour of sintered cobalt

powder was analyzed. The model of a diamond particle embedded in a metallic matrix was created using Abaqus software. The

preliminary analysis was performed to determine the mechanical parameters that are independent of the shape of the crystal. The

calculation results were compared with the experimental data. Next, sintered specimens obtained from two commercially available powder

mixtures were studied. The aim of the investigations was to determine the influence of the mechanical and thermal parameters of the

matrix materials on their retentive properties. The analysis indicated the mechanical parameters that are responsible for the retention of

diamond particles in a matrix. These mechanical variables have been: the elastic energy of particle, the elastic energy of matrix and the

radius of plastic zone around particle.

Go to article

Authors and Affiliations

J. Borowiecka-Jamrozek
J. Lachowski
Download PDF Download RIS Download Bibtex

Abstract

Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990’s due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al2O3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-ofthe-art in understanding and designing the Ni/alumina interface. There should be no doubt that optimization of the interface- and composite microstructure through judicious control of the fabrication process and surface modification shall yield technologically promising Ni-base/oxide fiber composites.

Go to article

Authors and Affiliations

R. Asthana
S.T. Mileiko
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

A simple resistance-based method was used to study the epoxy-carbon composite material. Measurement of changes of the resistance between contacts, located on the composite specimens, allows detecting the damage process in quasi-static and fatigue tests. The method can be useful to determine the margin of safety of composite elements.

Go to article

Authors and Affiliations

Paweł Pyrzanowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of similarity theory to investigations of transient heat transfer in materials with complex structure. It describes the theoretical-experimental method for identification and design of the structure of two-component composite walls based on the research of the thermal diffusivity for the composite and its matrix separately. The thermal diffusivity was measured by means of the modified flash method. The method was tested on two samples of double-layer ‘epoxy resin – polyamide’. All the investigated samples had the same diameter of 12 mm and thickness ranging from 1.39–2.60 mm and their equivalent value of thermal diffusivity ranging from (1.21–1.98)×10-7m2/s. Testing the method and research on carbon/epoxy composites was carried out at temperatures close to room temperature.
Go to article

Authors and Affiliations

Janusz Terpiłowski
Bartosz Gawron
Grzegorz Woroniak
Download PDF Download RIS Download Bibtex

Abstract

The presented work describes the results of examination of the mechanical properties of castings made either of AlSi9Mg alloy matrix

composite reinforced with short carbon fibre or of the pure AlSi9Mg alloy. The tensile strength, the yield strength, Young’s modulus, and

the unit elongation were examined both for initial castings and for castings made of the remelted composite or AlSi9Mg alloy. After

preparing metallographic specimens, the structure of the remelted materials was assessed. A few non-metallic inclusions were observed in

the structure of the remelted composite, not occurring in the initial castings. Mechanical testing revealed that all the examined properties of

the initial composite material exceed those of the non-reinforced matrix. A decrease in mechanical properties was stated both for the metal

matrix and for the composite after the remelting process, but this decrease was so slight that it either does not preclude them from further

use or does not restrict the range of their application.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
Download PDF Download RIS Download Bibtex

Abstract

Light weight, low density with high mechanical properties and corrosion resistance, aluminum is the most important material and is commonly used for high performance applications such as aerospace, military and especially automotive industries. The researchers who participate in these industries are working hard to further decrease the weight of end products according to legal boundaries of greenhouse gases. A lot of research was undertaken to produce thin sectioned aluminum parts with improved mechanical properties. Several alloying element addition were investigated. Yet, nowadays aluminum has not met these expectations. Thus, composite materials, particularly metal matrix composites, have taken aluminum’s place due to the enhancement of mechanical properties of aluminum alloys by reinforcements. This paper deals with the overview of the reinforcements such as SiC, Al2O3 and graphene. Graphene has recently attracted many researcher due to its superior elastic modulus, high fatigue strength and low density. It is foreseen and predicted that graphene will replace and outperform carbon nanotubes (CNT) in near future.
Go to article

Authors and Affiliations

U. Aybarc
D. Dispinar
M.O. Seydibeyoglu
Download PDF Download RIS Download Bibtex

Abstract

Polymer composite materials based on the Moplen HP400R polypropylene matrix with a filler from walnut shell flour with 30, 40 and 50% content and 200-315 µm and 315-443 µm fraction were produced by the injection method. The effect of filler content was analysed on the processing properties of the composites such as: MFR Melt Flow Rate and the MVR Melt Volume-flow Rate, as well as the temperature of the filler flour decomposition using the TGA thermogravimetric analysis method. The following was also determined: density, hardness, tensile strength and stiffness modulus of elasticity of the materials in question. The obtained composite material was characterised by low density, which increased with the rising filler content. It was found that the applied natural filler has increased the hardness and stiffness modulus of the composite and decreased the tensile strength.

Go to article

Authors and Affiliations

A. Włodarczyk-Fligier
M. Polok-Rubiniec
B. Chmielnicki
Download PDF Download RIS Download Bibtex

Abstract

The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.

Go to article

Authors and Affiliations

Bülent Ekici
Aykut Kentli
Haluk Küçük
Download PDF Download RIS Download Bibtex

Abstract

In this study, metal matrix composite materials containing melt-spun Al-20Si-5Fe alloys and boron carbide was produced by high energy ball milling and then hot pressing at 200 MPa pressure and 450°C. Mechanical and microstructural characterizations were performed by using an optical microscopy, X-Ray diffractometer, and dynamic microhardness tester. It was observed that boron carbide particles were homogenously distributed in the microstructure and values of microhardness and elastic modules were averagely 830 MPa and 42 GPa, respectively.
Go to article

Authors and Affiliations

Fatih Kilicaslan M.
Uzun A.
E. Karakose
Download PDF Download RIS Download Bibtex

Abstract

Aluminium metal matrix composites (AMMCs) are the fastest developing materials for structural applications. Friction Stir Processing (FSP) has evolved as a promising surface composite fabrication technique mainly because it is an eco-friendly and solid-state process. A spurt in the interest of research community and a resulting huge research output makes it difficult to find relevant information to further the research with objectivity. To facilitate this, the present article addresses the current state of the art and development in surface metal matrix fabrication through FSP with a specific focus on ex-situ routes. The available literature has been carefully read and categorized to present effects of particle size, morphology and elemental composition. The effect of various reinforcements on development of different functional characteristics is also discussed. Effect of main FSP parameters on various responses is presented with objectivity. Based on the studied literature concluding summary is presented in a manner in which the literature becomes useful to the researchers working on this important technology.
Go to article

Authors and Affiliations

N. Gangil
Noor Siddiquee A.
S. Maheshwari
A.M. Al-Ahmari
M.H. Abidi
Download PDF Download RIS Download Bibtex

Abstract

Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

Go to article

Authors and Affiliations

M.A. Malik
K.N. Braszczyńska-Malik
K. Majchrzak
Download PDF Download RIS Download Bibtex

Abstract

Preliminary tests aimed at obtaining a cellular SiC/iron alloy composite with a spatial structure of mutually intersecting skeletons, using a

porous ceramic preform have been conducted. The possibility of obtaining such a composite joint using a SiC material with an oxynitride

bonding and grey cast iron with flake graphite has been confirmed. Porous ceramic preforms were made by pouring the gelling ceramic

suspension over a foamed polymer base which was next fired. The obtained samples of materials were subjected to macroscopic and

microscopic observations as well as investigations into the chemical composition in microareas. It was found that the minimum width of a

channel in the preform, which in the case of pressureless infiltration enables molten cast iron penetration, ranges from 0.10 to 0.17 mm. It

was also found that the ceramic material applied was characterized by good metal wettability. The ceramics/metal contact area always has

a transition zone (when the channel width is big enough), where mixing of the components of both composite elements takes place.

Go to article

Authors and Affiliations

M. Cholewa
B. Lipowska
B. Psiuk
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites.

In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the

crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data

given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat

solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated

fibres.

In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high

temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after

directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of

directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.

Go to article

Authors and Affiliations

M. Górny
M. Kawalec
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research of impact strength of aluminum alloy EN AC-44200 based composite materials reinforced with

alumina particles. The research was carried out applying the materials produced by the pressure infiltration method of ceramic preforms

made of Al2O3 particles of 3-6m with the liquid EN AC-44200 Al alloy. The research was aimed at determining the composite resistance

to dynamic loads, taking into account the volume of reinforcing particles (from 10 to 40% by volume) at an ambient of 23°C and at

elevated temperatures to a maximum of 300°C. The results of this study were referred to the unreinforced matrix EN AC-44200 and to its

hardness and tensile strength. Based on microscopic studies, an analysis and description of crack mechanics of the tested materials were

performed. Structural analysis of a fracture surface, material structures under the crack surfaces of the matrix and cracking of the

reinforcing particles were performed.

Go to article

Authors and Affiliations

A. Kurzawa
J.W. Kaczmar

This page uses 'cookies'. Learn more