Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
Go to article

Authors and Affiliations

Tomasz Bury
Download PDF Download RIS Download Bibtex

Abstract

Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure.

Go to article

Authors and Affiliations

Magdalena Orszulik
Adam Fic
Tomasz Bury
Jan Składzień
Download PDF Download RIS Download Bibtex

Abstract

The emission rate of fibers released lrorn the new/fresh and used/worn ceramic fiber material. glass wool and man-made mineral fiber material due lo mechanical impact was determined experimentally. The emission rate has been defined as a number or fibers emitted per unit mass and unit impaction energy. The averaged emission rate of short fibers (LS 5 run) for all studied fresh non-asbestos fiber materials ranged lrom 2.2 to 20 fibers/(g·.l), while the emission or long fibers (I,> 5 urn) was between 2.2 and I 00 fibers/(g·J). The susceptibility or worn fiber-containing materials 10 emitting fibrous particles due 10 mechanical impaction was significantly diverse. Emission from glass wool unchanged with the exploitation, while the emission rate of the mineral fiber material increased by a factor of I O·' compared 10 new material. The dominating population or emitted fibers from studied materials ranged trorn 2 10 around 8 pm in length.
Go to article

Authors and Affiliations

Józef S. Pastuszka
Download PDF Download RIS Download Bibtex

Abstract

A lumped parameter type code, called HEPCAL, has been worked out in the Institute of Thermal Technology of the Silesian University of Technology for simulations of a pressurized water reactor containment transient response to a loss-of-coolant accident. The HEPCAL code has been already verified and validated against available experimental data, which in fact have been taken from separate effect tests mainly. This work is devoted to validation of the latest version of the HEPCAL code against experimental data from more complex tests. These experiments have been performed on three different test rigs (called TOSQAN,MISTRA and ThAI) and a part of them became the basis of the International Standard Problem No. 47 (ISP-47) dedicated to containment thermal-hydraulics. Selected experiments realized within the framework of the ISP-47 project have been simulated using the HEPCAL-AD code. The obtained results allowed for drawing of some important conclusions concerning heat and mass transfer models (especially steam condensation), two-phase flow model and buoyancy effects.
Go to article

Authors and Affiliations

Tomasz Bury
Jan Składzień
Adam Fic
Download PDF Download RIS Download Bibtex

Abstract

Asbestos cement sheets on building roofs and façades as well as asbestos cement water and sewerage pipes are the most frequently existing elements that contain asbestos in Poland. During removal from a specific building such a material automatically becomes hazardous waste. The presented paper covers studies carried out on leachability of pollutants from asbestos-containing waste, previously used for roofing. Laboratory tests under static conditions were carried out (1:10 test, pursuant to rules of the PN-EN 12457/1-4 standard) using distilled water as the leaching medium. Aluminium, boron, barium, cadmium, chromium, copper, iron, nickel, lead, strontium, zinc, and mercury were determined in the eluate. Low leachability of individual metals under the planned conditions was observed. In general, such metals as cadmium, nickel, lead, zinc, boron and mercury were not observed in solutions. The other analysed metals were observed in eluates, but their concentrations were usually low. The low leachability was found for barium (0.019 to 0.419 mg/dm3), chromium (0.019 to 0.095 mg/dm3), copper (0.006 to 0.019 mg/dm3), and iron (<0.01 to 0.017 mg/dm3). Increased leachability values were found only for strontium, between 0.267 and 4.530 mg/dm3, and aluminium, ranging from 0.603 to 3.270 mg/dm3. The analysed asbestos and cement materials feature a low percentage content of asbestos in flat and corrugated asbestos cement sheets (10–15%). Because of that it is possible to presume that pollutants characteristic of cement will be mainly present in products of leaching.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Janusz Mazurek
1
ORCID: ORCID
Jarosław Staszczak
2
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Low-frequency mechanical vibrations can trigger disasters such as coal-gas outbursts. An in-house “vibration-triaxial stress-seepage” experimental apparatus was used to measure the gas flow rate of rock specimens with varying vibrational frequency, gas pressure, and confining pressure. The results of these tests were then used to derive expressions that describe how the permeability of gas-containing coal rocks is related to these aforementioned factors. In addition, sensitivity coefficients were defined to characterise the magnitude of the permeability response to each permeability-affecting factor (i.e., vibrational frequency and gas pressure). The following insights were gained, regarding the effects of vibrational frequency on the permeability of gas-containing coal rocks: (1) If gas pressure and confining pressure are fixed, the permeability of gas-containing coal rocks rapidly increases, before gradually decreasing, with increasing vibrational frequency. Thus, the permeability of the gas-containing coal rock is always larger with vibrations than without. (2) If vibrational pressure and confining pressure are fixed, the relationship between the permeability of gas-containing coal rocks and gas pressure is consistent with the “Klinkenberg effect,” i.e., the permeability initially decreases, and then increases, with increasing gas pressure. (3) The change in permeability induced by each unit change in gas pressure is proportional to the gas pressure sensitivity coefficient. (4) The change in permeability induced by each unit change in vibrational frequency is proportional to the vibrational frequency sensitivity coefficient.
Go to article

Bibliography

[1] L. Zhou, L. Yuan, R. Thomas, A, Iannacchione, Determination of Velocity Correction Factors for Real-Time Air Velocity Monitoring in Underground Mines. Int. J. Coal Sci. Technol. 4 (4), 322-332 (2017). DOI: https://doi. org/10.1007/s40789-017-0184-z
[2] M. Ajamzadeh, V. Sarfarazi, H. Dehghani, Evaluation of Plow System Performance in Long-Wall Mining Method Using Particle Flow Code. Int. J. Coal Sci. Technol. 6 (4), 518-535 (2019). DOI: https://doi.org/10.1007/s40789- 019-00266-3
[3] Y. Lei, Y. Zeng, Z. Ning, Transient Flow Model of Multiply Fractured Horizontal Wells in Shale Gas Reservoirs and Well Test Analysis. Fau-Blo Gas Field 25 (4), 477-483 (2018). DOI: https://doi.org/10.6056/dkyqt201804015
[4] D. Jamróz, T. Niedoba, A. Surowiak, Application of Multi-Parameter Data Visualization by Means of Multidimensional Scaling to Evaluate Possibility of Coal Gasification. Arch. Min. Sci. 62 (3), 445-457 (2017). DOI: https://doi.org/10.1515/amsc-2017-0034
[5] Y. Cheng, H. Jiang, X. Zhang, J. Cui, C. Song, X. Li, Effects of Coal Rank on Physicochemical Properties of Coal and on Methane Adsorption. Int. J. Coal Sci. Technol. 4 (2), 129-146 (2017). DOI: https://doi.org/10.1007/ s40789-017-0161-6
[6] Y. Tan, Y. Yin, G. Teng, Simulation Research of Gas Seepage Based on Lattice Boltzmann Method. J. China Coal Soc. 39 (8), 1446-1454 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2014.9020
[7] V . Mishra, N. Singh, Microstructural Relation of Macerals with Mineral Matter in Coals From is Valley and Umaria, Son-Mahanadi Basin, India. Int. J. Coal Sci. Technol. 4 (2), 191-197 (2017). DOI: https://doi.org/10.1007/ s40789-017-0169-y
[8] C . Zhang, X. Liu, X. Wang, Combination Response Characteristics of Gas Seepage Velocity-Temperature Under Triaxial Loading. J. China Coal Soc. 43 (3), 743-750 (2018). DOI: https://doi.org/10.13225/j.cnki.jccs.2017.0735
[9] J. Wei, L. Wei, D. Wang, Experimental Study of Moisture Content Influences on Permeability of Coal Containing Gas. J. China Coal Soc. 39 (1), 97-103 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2013.0209
[10] D. Zhang, Effect Analysis of Temperature on Seepage Characteristics Between Moulded Coal and Raw Coal. Safe Coal Min. 49 (4), 152-155+159 (2018). DOI: https://doi.org/10. 13347/ j.cnki.mkaq.2018.04.040
[11] Y. Cai, X. Yang, Z. Tao, Q. Li, Experimental Study on Creep Seepage Coupling of Coal and Rock Containing Gas. Safety Coal Min. 47 (12), 19-22 (2016). DOI: https://doi.org/10.13347/j.cnki.mkaq.2016.12.006
[12] D. Wang, M. Peng, J. Wei, Development and Application of Tri-Axial Creep-Seepage-Adsorption and Desorption Experimental Device for Coal. J. China Coal Soc. 41 (3), 644-652 (2016). DOI: https://doi.org/10.13225/j.cnki. jccs.2015.0659
[13] J. Wei, S. Wu, D. Wang, F. Li, Seepage Rules of Loaded Coal Containing Gas Under the Coupling Effect of Temperature and Axial Deformation. J. Min. Safety Eng. 32 (1), 168-174 (02015). DOI: https://doi.org/10.13545/j. cnki.jmse.2015.01.027
[14] Z. Zhang, B. Cheng, Study of a Non-Linear Seepage Model of Coal Containing Gas. J. China U. Min. Techno. 44 (3), 453-459 (2015). DOI: https://doi.org/10.13247/j.cnki.jcumt.000327
[15] X . Yang, Z. Tao, B. Cai, Y. Lu, Numerical Simulation on Fluid-Solid Coupling of Gassy Coal and Rock. J. Liaoning Technical Univ. (Nat. Sci). 33 (8), 1009-1014 (2014). 2014. DOI: https://doi.org/10.3969/j.ssn.1008- 0562.2014.08.001
[16] L. Min, Z. Bin, Cartesian Closed Categories of FƵ-Domains. Acta. Math. Sin. 29 (12), 2373-2390 (2013). DOI: https://doi.org/CNKI:SUN:ACMS.0.2013-12-014
[17] B. Zhao, G. Wen, H. Sun, D. Sun, H. Yang, J. Cao, L. Dai, B. Wang, Similarity Criteria and Coal-Like Material in Coal and Gas Outburst Physical Simulation. Int. J. Coal Sci. Technol. 5 (2), 167-178 (2018). DOI: https://doi. org/10.1007/s40789-018-0203-8
[18] V .T. Presler, Modeling of Air-Gas and Dynamic Processes in Driving Development Workings in the Gas-Bearing Coal Seams. J. Min. Sci. 38 (2), 168-176 (2002). DOI: https://doi.org/10.1023/A:1021167606258
[19] L. Sahu, S. Dey, Enrichment of Carbon Recovery of High Ash Coal Fines Using Air Fluidized Vibratory Deck Separator. Int. J. Coal Sci. Technol. 4 (3), 262-273 (2017). DOI: https://doi.org/10.1007/s40789-017-0172-3
[20] S. Nazary, H. Mirzabozorg, A. Noorzad, Modeling Time-Dependent Behavior of Gas Caverns in Rock Salt Considering Creep, Dilatancy and Failure. Tunn. and Undergr. Sp. Tech. 33 (1), 171-185 (2013). DOI: https://doi. org/10.1016/j.tust.2012.10.001
[21] L. Sahu, S. Dey, Enrichment of Carbon Recovery of High Ash Coal Fines Using Air Fluidized Vibratory Deck Separator. Int. J. Coal Sci. Technol. 4 (3), 262-273 (2017). DOI: https://doi.org/10.1007/s40789-017-0172-3
[22] W. Tanikawa, T. Shimamoto, Comparison of Klinkenberg-Corrected Gas Permeability and Water Permeability in Sedimentary Rocks. Int. J. Rock Mech. Min. 46 (2), 229-238 (2009). DOI: https://doi.org/10.1016/j. ijrmms.2008.03.004
[23] B. Zhang, X. Xie, Y. Liu, Numerical Simulation on Gas Seepage in Front of Working Face Based on Fluid-Solid- Heat Coupling. J. Safety Sci. Tech. 14 (3), 89-94 (2018). DOI: https://doi.org/10.11731/ j.issn.1673-193x.2018.03.013
[24] M. Mlynarczuk, M. Wierzbicki, Stereological and Profilometry Methods in Detection of Structural Deformations in Coal Samples Collected from the Rock and Outburst Zone in The “Zofiowka” Colliery. Arch. Min. Sci. 54 (2), 189-201 (2009). DOI: https://doi.org/10.2110/jsr.2014.48

Go to article

Authors and Affiliations

Zhu Bairu
1
ORCID: ORCID
Song Yang
1
ORCID: ORCID
Wu Beining
1
ORCID: ORCID
Li Yongqi
1
ORCID: ORCID

  1. Liaoning Technical University, School of Civil Engineering, Fuxin, Liaoning, 123000, China
Download PDF Download RIS Download Bibtex

Abstract

The zinc and lead industry generates substantial quantities of waste. Among the many types of wastes, such as dust or liquid, a large proportion are solid waste such as slags. The purpose of the study was the qualitative and quantitative assessment of the short rotary kiln slags and slags deposited in a hazardous waste landfill originating from zinc and lead metallurgy. This assessment represents the primary step in evaluating materials such as slags concerning their potential for substantial applications, such as process for metal separation. Additionally, this evaluation forms the basis for a comprehensive environmental study. The concentrations of the four predominant metals – Fe>Pb>Zn>Cu – and accompanying elements – Na>Ca>K>Ni>Mn>Cr – were determined using atomic absorption spectroscopy (AAS) after aqua regia digestion. A large variation was found in the phase analysis of the studied materials based on SEM, XRD, X-ray microanalysis, and BCR sequential extraction. The BCR analysis revealed the occurrence of major metals in four different fractions: acid-soluble, reducible, oxidizable, and residual. Pb was mainly present in the acid-soluble fraction, while Fe, Cu, and Zn were present in the residual fraction.
Go to article

Bibliography

  1. Alan, M. and D. Kara (2019). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey, Talanta, 194, pp. 189-198. DOI: 10.1016/j.talanta.2018.10.030.
  2. Baczewska, A. H., W. Dmuchowski, B. Gworek, P. Dąbrowski and P. Brągoszewska (2016). Comparison of bioindication methods for assessing the level of air pollution with heavy metals in Warsaw, Przemysł Chemiczny, 95/3, pp. 334-338. DOI: 10.15199/62.2016.3.1.
  3. Bernasowski, M., A. Klimczyk and R. Stachura (2017). Overview of Zinc Production in Imperial Smelting Process. Iron and Steelmaking Conference 4-6.10.2017, Horní Bečva, Česká republika.
  4. Briffa, J., E. Sinagra and R. Blundell (2020). Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, pp. 1-26. DOI: 10.1016/j.heliyon.2020.e04691.
  5. Cabała, J. (2009). Heavy metals in the soil environment of Olkusz Zn-Pb ore mining regions. Wydawnictwo Uniwersytetu Śląskiego Katowice 2009 (in Polish)
  6. Chao-Yin, K., W. Chung-Hsin and L. Shang-Lien (2005). Removal of copper from industrial sludge by traditional and microwave acid extraction, Journal of Hazardous Materials, 120, 1-3, pp. 249-256. DOI: 10.1016/j.jhazmat.2005.01.013.
  7. Dan Chen, Wing Yin Aua, A. R. Stijn van Ewijk and J. Stegemann (2021). Elemental and mineralogical composition of metal-bearing neutralisation sludges and zinc speciation – A review, Journal of Hazardous Materials, 416, 2. DOI: 10.1016/j.jhazmat.2021.125676.
  8. Ettler, V., F. Bodenan and O. Legendre (2001). Primary phases and natural weathering of old lead-zind pyrometallurgical slag from Pribram, Czech Republic, The Canadian Mineralogist, 39, pp. 873-888. DOI: 10.2113/gscanmin.39.3.873.
  9. Gao, H., G. F. Koopmans, J. Song, J. E. Groenenberg, X. Liu, R. N. J. Comans and L. Weng (2022). Evaluation of heavy metal availability in soils near former zinc smelters by chemical extractions and geochemical modelling, Geoderma, 423. DOI: 10.1016/j.geoderma.2022.115970.
  10. Herreweghe, S. V., R. Swennen, C. Vandecasteele and V. Cappuyns (2003). Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples, Environmental Pollution, 122, pp. 323-342. DOI: 10.1016/S0269-7491(02)00332-9.
  11. Izydorczyk, G., K. Mikula, D. Skrzypczak, K. Moustakas, A. Witek-Krowiak and K. Chojnacka (2021). Potential environmental pollution from copper metallurgy and methods of management, Environmental Research, 197, pp. 1-11. DOI: 10.1016/j.envres.2021.111050.
  12. Jin, Z., T. Liu, Y. Yang and D. Jackson (2014). Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition, Ecotoxicology and Environmental Safety, 104, pp. 43-50. DOI: 10.1016/j.ecoenv.2014.02.003.
  13. Jonczy, I., M. Kamińska, B. Chwedorowicz and B. Kowalski (2017). The use of X-ray Spectral Analysis in Microareas in the determination of elements accompanying minerals of Zinc-Lead Ores from the Klucze I deposit. Systemy Wspomagania w Inżynierii Produkcji Górnictwo Zrównoważonego Rozwoju 2016, P. A. Nova. (in Polish)
  14. Ke, W., J. Zeng, F. Zhu, X. Luo, J. Feng, J. He and S. Xue (2022). Geochemical partitioning and spatial distribution of heavy metals in soils contaminated by lead smelting, Environmental Pollution, 307, pp. 1-11. DOI: 10.1016/j.envpol.2022.119586.
  15. Król, A., K. Mizerna and M. Bożym (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag, Journal of Hazardous Materials, 384, 121502, pp. 1-9. DOI: 10.1016/j.jhazmat.2019.121502.
  16. Kruk, M. (2022). Comparison of digestion methods of slag samples from zinc and lead industry to identify the content of selected metals. ArchaeGraph. Łódź 2022 (in Polish)
  17. Lestari, F. Budiyanto and D. Hindarti (2018). Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia, IOP Conference Series: Earth and Environmental Science, 118, 1, pp. 1-7. DOI: 10.1088/1755-1315/118/1/012059.
  18. Li, L., Y. Zhang, J. A. Ippolito, W. Xing, K. Qiu and H. Yang (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans, Environmental Pollution, 257, pp. 1-7. DOI: 10.1016/j.envpol.2019.11361.
  19. Li, Y., I. Perederiy and V. G. Papangelakis (2008). Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching, Journal of Hazardous Materials, 152, pp. 607-615. DOI: 10.1016/j.jhazmat.2007.07.052.
  20. Luo, S., S. Zhao, P. Zhang, J. Li, X. Huang, B. Jiao and D. Li (2022). Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology, Construction and Building Materials, 327, pp. 1-10. DOI: 10.1016/j.conbuildmat.2022.127006.
  21. Margui, V. Salvado, I. Queralt and M. Hidalgo (2004). Comparison of three-stage sequential extraction and toxicity characteristic leaching tests to evaluate metal mobility in mining wastes, Analytica Chimica Acta, 524, pp. 151-159. DOI: 10.1016/j.aca.2004.05.043.
  22. Nowińska, K. and Z. Adamczyk (2013). The mobility of accompanying elements to wastes from metallurgy of the zinc and the leadon in the environment, Górnictwo i Geologia, T. 8, z. 1, pp. 77-87. (in Polish)
  23. Nowińska, K. and Z. Adamczyk (2017). Slags of the Imperial Smelting Process for Zn and Pb production, Reference Module in Materials Science and Materials Engineering, pp. 1-5. DOI: 10.1016/B978-0-12-803581-8.03607-9.
  24. Pan, D. a., L. Li, X. Tian, Y. Wu, N. Cheng and H. Yu (2019). A review on lead slag generation, characteristic, and utilization, Resources, Conservation & Recycling, 146, pp. 140-155. DOI: 10.1016/j.resconrec.2019.03.036.
  25. Patle, A., R. Kurrey, M. K. Deb, T. K. Patle, D. Sinha and K. Shrivas (2022). Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review, Journal of the Idian Chemical Society, 99, pp. 1-12. DOI: 10.1016/j.jics.2022.100545.
  26. Rauret, G., J. Lopez-Sanchez, D. Luck, M. Yli-Halia, H. Muntau and P. Quevauviller (2001). EUR 19775 EN. E. Commission. Belgium.
  27. Rauret, G., J. F. Lopez-Sanchez, A. Sahuquillo, R. Rubio, C. Davidson, A. Ure and P. Quevauviller (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, Journal of Environmental Monitoring,1, pp. 57-61. DOI: 10.1039/a807854h
  28. Różański, S. (2013). Fractionation of selected heavy metals in agricultural soils, Ecological Chemistry and Engineering S, 20, 1, pp. 117-125. DOI: 10.2478/eces-2013-0009.
  29. Seignez, N., D. Bulteel, D. Damidot, A. Gauthier and J.-L. Potdevin (2006). Weathering of metallurgical slag heaps: multi-experimental approach of the chemical behaviours of lead and zinc, Waste Management and the Environment III, 92, pp. 31-40. DOI: 10.2495/WM060041.
  30. Singh, A. and M. K. Chandel (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk, Journal of Environmental Management, 304, pp. 1-11. DOI: 10.1016/j.jenvman.2021.114206.
  31. Singh, G., S. Das, A. A. Ahmed, S. Saha and S. Karmakar (2015). Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure, Procedia - Social and Behavioral Sciences, 195, pp. 2272-2279. DOI: 10.1016/j.sbspro.2015.06.316.
  32. Sobanska, S., D. Deneele, Barbillat and B. A. Ledesert (2016). Natural weathering of slags from primary Pb-Zn smelting as evidenced by Raman microspectroscopy, Applied Geochemistry, 64, pp. 107-117. DOI: 10.1016/j.apgeochem.2015.09.011.
  33. Tlustos, P., J. Szakova, A. Starkova and D. Pavlikova (2005). A comparison of sequential extraction procedures for fractionation of arsenic, cadmium, lead, and zinc in soil, Central European Journal of Chemistry, 3, 4, pp. 830-851. DOI: 10.2478/BF02475207.
  34. Wali, A., G. Colinet and M. Ksibi (2014). Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia, Environmental Research, Engineering and Management, 4, 70, pp. 14-26. DOI: 10.5755/j01.erem.70.4.7807.
  35. Wang, J., Y. Jiang, J. Sun, J. She, M. Yin, F. Fang, T. Xiao, G. Song and J. Liu (2020). Geochemical transfer of cadmium in river sediments near a lead-zinc smelter, Ecotoxicology and Environmental Safety, 196, pp. 1-10. DOI: 10.1016/j.ecoenv.2020.110529.
  36. Warchulski, R. and K. Szopa (2014). Phase composition of Katowice – Wełnowiec pytometallurgical slags: preliminary SEM study, Contemporary Trends in Geoscience, 3, pp. 76-81. DOI: 10.2478/ctg-2014-0025.
  37. Xu, D.-M., R.-B. Fu, Y.-H. Tong, D.-L. Shen and X.-P. Guo (2021). The potential environment risk implications of heavy metals based on their geochemical and mineralogical characteristic in the size-segregated zinc smelting slags, Journal of Cleaner Production, 315, pp. 1-13. DOI: 10.1016/j.jelepro.2021.128199.
  38. Yin, N.-H., Y. Sivry, F. Guyou, P. N. L. Lens and E. D. v. Hullebusch (2016). Evaluation on chemical stability of lead blast furnance (LBF) and imperial smelting furnance (ISF) slags, Journal of Environmental Management, 180, pp. 310-323. DOI: 10.1016/j.jenvman.2016.05.052.
  39. Zemberyova, M., J. Bartekova and I. Hagarova (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins, Talanta, 70, pp. 973-978. DOI: 10.1016/j.talanta.2006.05.057.
  40. Zhang, S., N. Zhu, W. Shen, X. Wei, F. Li, W. Ma, F. Mao and P. Wu (2022). Relationship between mineralogical phase and bound heavy metals in copper smelting slags, Resources, Conservation & Recycling, 178, pp. 1-7. DOI: 10.1016/j.resconrec.2021.106098.
Go to article

Authors and Affiliations

Milena Nocoń
1
Irena Korus
1
Krzysztof Loska
1

  1. Silesian University of Technology, Faculty of Environmental Engineering and Energy, Department of Water and Wastewater Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study has investigated the technical characteristics of a number of sorption materials (natural mineral) and the pos-sibility of their use for the purification of surface and wastewater from oil and oil products. At the first step, regularities of the process of purification of oily waters have been established taking into account the processes of filtration and sorption. After that, the sorption capacity of the sorbents has been estimated, and the factors influencing it analysed. As a final step, the optimal conditions for the sorption process have been selected depending on the conditions and nature of purification. Results indicated that the maximum purification degree has been reached at the concentration of 500 mg∙dm–3 and temper-ature of 20°С.
Go to article

Authors and Affiliations

Saltanat T. Tleuova
1
ORCID: ORCID
Banu A. Userbayeva
2
ORCID: ORCID
Alibek S. Tleuov
1
ORCID: ORCID
Marina M. Yeskendirova
1
ORCID: ORCID
Raissa R. Yakubova
1
ORCID: ORCID
Kulyash Z. Kerimbayeva
2

  1. M. Auezov South Kazakhstan State University, Department of Chemical Technology of Inorganic Substances, Tauke khan aven, 5, Shymkent, 160012, Kazakhstan
  2. South Kazakhstan State Pedagogical University, Department of Chemistry, Shymkent, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Any type of material that increases soil yield, both qualitatively and quantitatively, to strengthen the soil and increase its fertility is called fertilizer. The current study examines the production of a new effective fertilizer. Results presented involve effects of new bioorganic-mineral compositions obtained from the combination of vermicompost and sulphur-containing waste from sulphuric acid production on the yield and quality of tubers (beets, carrots). An increase in the yield of tubers has been found to be 1.13–1.25 times when the bioorganic-mineral composition (~20 Mg∙ha–1) is introduced into the sierozem (serozem) soil. The best results are obtained with mass ratios in the range 30–45 and 55–70 for vermicompost and sulphur-perlite-containing waste, respectively. The effectiveness of the mixture of vermicompost and sulphur-containing waste is explained by the increased synergistic interaction of these components. The proposed composition has high structure-form-ing, water-retaining, nutritional and biologically active properties.
Go to article

Authors and Affiliations

Moldir O. Baikhamurova
1 2
Gaukhar A. Sainova
2
Amankul D. Akbasova
2
Gulshat D. Anarbekova
1
Mehmet A. Ozler
3

  1. Kazakh National Agrarian University, Faculty of Agrobiology, Abay avenue 8, Almaty 050010, Kazakhstan
  2. Khoja Akhmet Yassawi International Kazakh-Turkish University, Ecology Research Institute, B. Sattarhanov avenue 29, Turkistan 161200, Kazakhstan
  3. Muğla Sıtkı Koçman University, Faculty of Science, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Along with changes in customer expectations, the process of ordering a house, especially one built with the most modern technology from prefabricated HQ 40-foot shipping containers, should take place in an atmosphere of free-flowing, customer-friendly conversation. Therefore, it is important that the company producing such a solution has a tool supporting such offers and orders when producing personalized solutions. This article provides an original approach to the automatic processing of orders based on an example of orders for residential shipping containers, natural language processing and so-called premises developed. Our solution overcomes the usage of records of the conversations between the customer and the retailer, in order to precisely predict the variant required for the house ordered, also when providing optimal house recommendations and when supporting manufacturers throughout product design and production. The newly proposed approach examines such recorded conversations in the sale of residential shipping containers and the rationale developed, and then offers the automatic placement of an order. Moreover, the practical significance of the solution, thus proposed, was emphasized thanks to verification by a real residential ship container manufacturing company in Poland.
Go to article

Authors and Affiliations

Adam Dudek
1
ORCID: ORCID
Justyna Patalas-Maliszewska
2
ORCID: ORCID
Jacek Frączak
3

  1. University of Applied Sciences in Nysa, Armii Krajowej 7, 48-300 Nysa, Poland
  2. University of Zielona Góra, ul. Licealna 9,65-417 Zielona Góra, Poland
  3. Sanpol Sp. z o.o, Sulechowska 27a, 65-119, Zielona Góra, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the issue of container handling processes at a rail-road intermodal terminal. In the article, we have focused on the problem of a terminal layout design from the point of view of parking lots for external trucks. The main purpose of this article is the assessment of the necessary parking lots for the trucks considering daily turnover of containers and the trucks appointment time windows. We analyze how the length of the truck’s appointment time windows as well as the difficulties in containers loading operations and a number of handling equipment influence the necessary parking lots for trucks in the intermodal terminal. The trucks planned for loading of import containers may arrive at the terminal before the loading moment that is specified in crane operations schedule. The container handling time is given by a probability distribution. The equations defining the most important elements of the considered problem were presented in the general form. The special case of this model has been developed in the FlexSim simulation software. Based on the simulation research and calculations we pointed out that right truck’s appointment time windows can significantly reduce necessary parking lots at the yard. The literature analysis presented in the article indicates that most of the research in the field of intermodal terminal is focused on operations in container ports. There is lack of literature considering rail-road terminal layout planning in terms of the necessary parking lots and truck’s appointment time windows.
Go to article

Authors and Affiliations

Emilian Szczepański
1
ORCID: ORCID
Marianna Jacyna
2
ORCID: ORCID
Roland Jachimowski
1
ORCID: ORCID
Rostislav Vašek
3
Karol Nehring
4
ORCID: ORCID

  1. Assc. Prof. PhD, Eng., Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
  2. Prof. PhD, Eng., Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
  3. ID International, Czech Republic, Nádražní 184,702 00 Ostrava
  4. MSc, Eng., Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

A contemporary European city faces various challenges, and it remains in a permanent state of crisis. The components that create such a situation are subject to change over time. In addition to the existing problems, the inhabitants, authorities, and people involved in designing and transforming the city, including architects, face newchallenges. In recent years, the old problem of a shortage of affordable housing has been coupled with new challenges, including a sudden influx of refugees, climate change and its consequences, and the pandemic. Solutions to these issues are complex and multi-dimensional, and the actions to be taken are of interdisciplinary nature. Prefabricated architecture can be part of these solutions. Prefabricated building technologies, including prefabricated large-panel buildings, modular buildings and mobile structures, can, under appropriate conditions, modernize the process of building new housing. These solutions fit into the idea of sustainable development and can respond to unexpected and dynamically changing circumstances over time (emergency buildings). This paper examines the contemporary urban crisis and possible steps to be taken through the prism of the possibilities offered by the design of prefabricated buildings. The question is what criteria and design strategies should be adopted for prefabricated architecture to meet the demands of a city in crisis? The conducted analyses are universal. Nevertheless, they consider the application of prefabricated solutions in architecture in Poland and the potential for its further development. Therefore, the discussed implementations from the author’s country are given an important role in the text and are shown first against the background of European design practice. Omission of solutions from other continents is a deliberate delimitation.
Go to article

Authors and Affiliations

Anna Tofiluk
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Architecture, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more