Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the mechanical reclamation of spent moulding sands from the Cordis technology are presented in the paper.

The quality assessment of the obtained reclaim and the influence of the reclaim fraction in a matrix on the core sand strength is given. The

reclaim quality assessment was performed on the basis of the determination of losses on ignition, Na2O content on reclaim grains and pH

values. The reclaim constituted 100%, 75% and 50% of the core sand matrix, for which the bending strength was determined. The matrix

reclamation treatment was performed in the experimental rotor reclaimer RD-6. Spent sands were applied in as-delivered condition and

after the heating to a temperature of 140 o

C. Shaped samples for strength tests were made by shooting and hardening of sands in the warmbox

technology.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
M. Skrzyński
M. Dereń
Ł. Zygmunt
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of sand shooting into the core box are presented in the hereby paper. The investigations concern the formation of the diphase sand-air flux, its motion, flowing and compaction in the cavity during the core forming. Conditions deciding on the course of individual phases of the process are discussed with taking into consideration the influence of such factors as: the shot pressure, shooting hole diameter, number and distribution of deaerating vents in experimental core boxes (of a single cavity and of multi cavities) on the core sand compaction state. Investigations were performed by means of the modernised experimental shooting machine SR-3D, of the shooting chamber volume of 3.3 dm3, connected with the system of pneumatic supply ensuring the stable pressure supply of values: 0.4 MPa, 0.5 MPa and 0.6 MPa. Two diameters of the shooting hole, equal 10 mm and 20 mm, were applied for filling three experimental core boxes differing in dimensions of cavities and in number and distribution of deaerating vents. The filling process of core boxes was recorded by means of the digital camera PHANTOM V210 with the filming rate of 3000 pictures in second. Simultaneously, during the shot, other values allowing to determine the intensity of the core sand outflow from the shooting chamber to the core box, were tested. The presented in this publication results constitute the important element of the experimental verification of the blowing process simulation calculations which will be performed.
Go to article

Authors and Affiliations

R. Dańko
Download PDF Download RIS Download Bibtex

Abstract

The results of model investigations of the influence of the blowing process selected parameters on the distribution of the compaction of the core made by the blowing method, are presented in the hereby paper. These parameters were: shooting pressure, shooting hole diameter, amount and distribution of deaerating holes. Investigations were performed using the horizontal core box of the cuboidal cavity and the same core box into which inner inserts were introduced. These inserts were dividing the primary volume into three sectors differing in their direction, introduction conditions and the character of the core sand flow. As the compaction measure the apparent sand density was assumed. The density was determined in five measuring points in case of uniform cores, and in three measuring points in case of cores obtained in the core box with three separated sectors. The apparent density of the compacted core sand in the core box cavity was determined on the basis of the measurements of masses and volumes of samples cut-out from the determined core places by means of the measuring probe. Investigations were performed at three values of the working pressure equal 0.4, 0.5 and 0.6MPa for two diameters of the shooting hole: 10 and 20 mm. During tests the core box deaeration, controlled by an activisation of the determined number of deaerating vents placed in the core box, was also subjected to changes.
Go to article

Authors and Affiliations

R. Dańko
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of the influence of the matrix grain sizes on properties of cores made by the blowing method are presented in

the hereby paper. Five kinds of matrices, differing in grain size compositions, determined by the laser diffraction method in the Analysette

22NanoTec device, were applied in investigations. Individual kinds of matrices were used for making core sands in the Cordis technology.

From these sands the shaped elements, for determining the apparent density of compacted sands and their bending strength, were made by

the blowing method. The shaped elements (cores) were made at shooting pressures being 3, 4 and 5 atn. The bending strength of samples

were determined directly after their preparation and after the storing time of 1 hour.

Go to article

Authors and Affiliations

R. Dańko
Download PDF Download RIS Download Bibtex

Abstract

Core sands for blowing processes, belong to these sands in which small amount of the applied binding material has the ability of covering

the sand matrix surface in a way which - at relatively small coating thickness - allows to achieve the high strength. Although the deciding

factor constitute, in this aspect, strength properties of a binder, its viscosity and ability to moisten the matrix surface, the essential meaning

for the strength properties of the prepared moulding sand and the mould has the packing method of differing in sizes sand grains with the

coating of the binding material deposited on their surfaces.

The knowledge of the influence of the compaction degree of grains forming the core on the total contact surface area can be the essential

information concerning the core strength.

Forecasting the strength properties of core sands, at known properties of the applied chemically hardened binder and the quartz matrix,

requires certain modifications of the existing theoretical models. They should be made more realistic with regard to assumptions

concerning grain sizes composition of quartz sands and the packing structure deciding on the active surface area of the contacts between

grains of various sizes and - in consequence - on the final strength of cores.

Go to article

Authors and Affiliations

R. Dańko
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of influence microwave drying on strength and technological properties of molding sand with gypsum binder researches, which, immediately after making and after the natural initial setting in air for 1, 2 or 5 hours, was heated with 250 W microwave power for 3, 6, 9 and 12 min time periods. The test was carried out on a mass containing (% -wt.): 88% Grudzeń-Las quartz sand, 12% "Dolina Nidy" plaster gypsum and 6% water. The loss of moisture content during natural drying and then microwave drying was determined, significant from the point of view of using the mass with gypsum binder in the production of products, using an environmentally friendly technology without casting incompatibilities. Additionally, the compressive strength of the mass was measured. The influence of both drying methods on the binder crystallization process and the associated mass strength was demonstrated, especially in terms of the possibility of selecting parameters and / or intensifying a specific drying method for use in the technology of manufacturing molds and foundry cores.
Go to article

Bibliography

[1] Borkowska, M. & Smulikowski, K. (1973). Rock forming minerals. Warszawa: Wydawnictwa Geologiczne. (in Polish).
[2] Lopez-Beceiro J., Gracia-Fernandez C., Tarrio-Saavedra J., Gomez-Barreiro S. & Artiaga R. „Study of gypsum by PDSC”. Journal of Thermal Analysis and Calorimetry (2012) 109: 1177-1183.
[3] Balance of mineral resources management in Poland and the world. Polish Geological Institute, Research Institute. Warszawa 2014. (in Polish)
[4] Chłądzyński, S. & Pichniarczyk, P. (2006). Gypsum and gypsum products in European standards. Materiały Budowlane. 6(10), 42-46. (in Polish).
[5] Akerman, K. (1964). Gypsum and anhydrite. Warszawa: PWN. (in Polish).
[6] Hazzat M., Sifou A., Ansalane S. & Hamidi A. (2019). Novel approach to termal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method. Journal of Thermal Analysis and Calorimetry. 140 (2).
[7] Badens E., Veesler S., Bojstelle R. (1999). Crystallization of gypsum from hemihydrate in presence of additives. Journal of Crystal Growth. 198-199. P. 704-709.
[8] Singh N.B., Middendorf B. (2007). Calcium sulphate hemihydrate hydratation leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials. (53)7. 57-77.
[9] Pigiel M. & Granat K. (1997). Application of microwave heating in foundry. Krzepnięcie Metali i Stopów. 33/35. (in Polish).
[10] Parosa R. & Reszke E. (2000). Application of the microwave technique in foundry. Krzepnięcie Metali i Stopów. 2(2000), 419-425. (in Polish).
[11] Pawlak M. (2010). The influence of composition of gypsum plaster on its technological properties. Archives of Foundry Engineering. 10(4/2010), 55-60.
[12] Granat K., Paduchowicz P., Dziedzic A., Jamka M. & Biały P. (2020). Impact of hardening methods on the moulding sand’s properties with gypsum binder. Archives of Foundry Engineering. 4(20). 13-17. doi: 10.24425/afe.2020.133342.
[13] Nowak D., Gal B., Włodarska A. & Granat K. (2019). The influence of microwave drying parameters on the properties of synthetic moulding sands. Archives of Foundry Engineering. 4(19). 51-54.
[14] Gupta M. & Leong W. W. (2007). Microwaves and etals. Wiley. Azja 2007.
[15] Kowalski S., Rajewska K. & Rybicki A. Fizyczne podstawy suszenia mikrofalowego. Poznań: Wydawnictwo Politechniki Poznańskiej 2005 (in Polish).
[16] Kaczmarska K., Grabowska B. & Drożyński D. (2014). Analysis of selected properties of microwave-hardened molding sands bound with starch-based binders. Archives of Foundry Engineering. 4(14). 51-54. (in Polish).
[17] Banaszak J. & Rajewska K. (2013). Microwave drying of ceramic masses. Materiały odlewnicze. 2(2013), 180-185. (in Polish).
[18] Biały P. (2019). Selection of the method for curing environment-friendly moulding sands with a gypsum binder. Unpublished master thesis, Wroclaw University of Science and Technology, Wrocław, Poland. (in Polish).
[19] Zhenjun W., Nan D., Xiaofeng W. & Jie Z. (2020). Laboratory investigation of effects of microwave heating on early strength of cement bitumen emulsion mixture. Construction and Building Materials. 236(20). doi: 10.1016/j.conbuildmat.2019.117439
[20] Jinxin H., Guang X., Yunpei L., Guozung H. & Ping C. (2020). “Improving coal permeability using microwave heating technology – A rewiev”. Fuel. 266(2020). 10.1016/j.fuel.2020.117022
[21] Chaouki J., Farag S., Attia M. & Doucet J. (2020). The development of industrial (thermal) processes in the context of sustainability: The case of microwave heating. The Canadian Journal of Chemical Engineering. 98(2020). 832-847.
[22] Gajmal S. & Raut D.N. (2019). A review of opportunities and challenges in microwave assisted casting. Recent Trends i Production Engineering. 2(2019). 1-17.
[23] Paduchowicz P., Stachowicz M., Baszczuk A., Hasiak M. & Granat K. (2020). Evaluation of the chemical composition, TG – DTA and tensile strength tests of commercial gypsum kinds for foundry sandmixes application. Archives of Foundry Engineering. 2(20), 59-64.
[24] Dolina Nidy company catalog (2013 Juli). Technical data sheet. Retrieved Januar 7, 2016, from http://www.dolinanidy.com.pl/images/stories/pdf/gb.pdf
[25] Lewandowski J. L. (1997). Materials for foundry mass. Kraków: Akapit. (in Polish).
[26] Blajerska, P. (2016). Determination of the possible applicability of microwave in production of casting plaster mould. Unpublished master thesis, Wroclaw University of Science and Technology, Wrocław, Poland. (in Polish).
[27] Paduchowicz P, Stachowicz M. & Granat K. (2017). Effect of microwave heating on moulding sand properties with gypsum binder. Archives of Foundry Engineering. 3(2017), 97-102.
[28] PN-83 / H-11070
[29] PN-83/H-11073

Go to article

Authors and Affiliations

P.J. Paduchowicz
1
K. Granat
1
P. Biały
1

  1. Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The foundry industry is looking for solutions that improve the quality of the finished product and solutions that reduce the negative impact of the industry on the natural environment [26]. This process leads to work on the use of new or previously unused materials for binders. Organic and inorganic foundry binders are replaced by renewable materials of plant origin to meet the requirements of both the foundry customers and the environmental and health and safety regulations. The aim of this work was to identify the applicability of renewable and organic malted barley binder in moulding sand technology. The influence of the malt binder content on dry tensile strength, dry bending strength, dry permeability, dry wear resistance and flowability were evaluated. The results show that the malted barley binder can be self-contained material binding the high-silica sand grains. Selected mechanical properties of moulding sands were found to increase with an increase in binder content. It was observed that malted barley binder creates smooth bonding bridges between high-silica sand grains.
Go to article

Bibliography

[1] Lewandowski, J.L., (1997). Moulding materials. Kraków: Akapit Publisher. (in Polish).
[2] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metals Research. 28(3), 129-139. DOI: 10.1179/1743133614Y.0000000140.
[3] Ferreira, S. H. G. da, J. C. E., Kumar, V. & Garza-Reyes, J. A. (2020). Benchmarking of cleaner production in sand mould casting companies. Management of Environmental Quality: An International Journal. 31(5), 1407-1435. DOI: 10.1108/MEQ-12-2019-0272.
[4] Fayomi, O.S.I. (2016). Hybrid effect of selected local binders on the moulding properties of river niger silica sand for industrial application. Journal of Nanoscience with Advanced Technology. 1(4), 19-23. DOI: 10.24218/jnat.2016.19.
[5] Yaro, S.A. & Suleiman, M.U. (2006), Cassava/guinea corn starches and soybean oil as core binders in sand casting of aluminium silicon (Al-Si)lloy. Journal of Engineering and Technology. 1(1), 47-55.
[6] Grabowska, B. & others. (2018). Influence of carbon fibers addition on selected properties of microwave-cured moulding sand bonded with BioCo2 binder. Archives of Foundry Engineering. 18(3), 152-160. DOI: 10.24425/123618.
[7] Chowdhury, S.I. Rashid, H. & Mumtaz, G.R. (2016) Comparison and CFD verification of binder effects in sand mould casting of aluminum alloy. ANNALS of Faculty Engineering Hunedoara - International Journal of Engineering. 14(1), 143-146.
[8] Manley, D. (2000). 9 - Meals, grits, flours and starches (other than wheat). Technology of Biscuits, Crackers and Cookies (Third Edition). (104–111). Red. Woodhead Publishing.
[9] Yu, W., Quek, W., Li, C., Gilbert, R. & Fox, G. (2018) Effects of the starch molecular structures in barley malts and rice adjuncts on brewing performance. Fermentation. 4(4), 103-124. DOI: 10.3390/fermentation4040103.
[10] Fox, G.P. (2009). Chemical composition in barley grains and malt quality. Genetics and Improvement of Barley Malt Quality. (63-98). Zhang G. & C. Li, Red. Berlin, Heidelberg: Springer Berlin Heidelberg. [11] Pezarski, F., Izdebska-Szanda I., Smoluchowska, E., Świder, R. & Pysz, A. (2011). Application of moulding sands with geopolymer binder in the manufacture of castings from aluminium alloys. Prace Instytutu Odlewnictwa. 51(2), 23-34. (in Polish).
[12] Stachowicz, M. Granat, K. & Nowak, D. (2012). Bending strength measurement as a method of binder quality assessment on the example of water-glass containing moulding sands. Archives of Foundry Engineering. 12(1), 175-178. (in Polish).
[13] Stachowicz, M., Granat, K. & Nowak, D. (2010). Studies on the possibility of more effective use of water glass thanks to application of selected methods of hardening. Archives of Foundry Engineering. 10 (spec.2), 135-140.
[14] Szymański, A., (2007). Soil mechanics. Warszawa: Wydawnictwo SGGW. (in Polish).
[15] Ochulorl, E.F., Ugboaja, J.O. & Olowomeye, O.A. (2019). Performance of kaolin and cassava starch as replacements for bentonite in moulding sand used in thin wall ductile iron castings. Nigerian Journal of Technology. 38(4), 947-956. DOI: 10.4314/njt.v38i4.18.
[16] Popoola, A.P.I., Abdulwahab, M. & Fayomi, O.S.I. (2012). Synergetic performance of palm oil (Elaeis guineensis) and pine oil (Pinus sylvestris) as binders on foundry core strength. International Journal of the Physical Sciences. 7(24), 3062-3066. DOI: 10.5897/IJPS12.347.
[17] Atanda, P.O., Akinlosotu, O.C. & Oluwole, O.O. (2014). Effect of some polysaccharide starch extracts on binding characteristics of foundry moulding sand. International Journal of Scientific & Engineering Research. 5(3), 362-367.
[18] Pezarski, F., Maniowski, Z., Izdebska-Szanda, I. & Smoluchowska, E. (2006). Investigations of moulding and core sands made with a new geopolymer binder assigned for production of steel castings. Archives of Foundry. 6(20), 65-70. (in Polish).
[19] Pezarski, F., Smoluchowska, E. & Izdebska-Szanda, I. (2008). Application of geopolymer binder in manufacturing of casting from ferrous alloys. Prace Instytutu Odlewnictwa. 48(2), 19-34. (in Polish).
[20] Jaworski, J. (2006). Research of stability of preparation system of circulating moulding sands. Archives of Foundry Engineering. 6(18), 495-500. (in Polish).
[21] Michta-Stawiarska, T. (2000). The selected iron castings defects as the effect of the sandmix quality. Solidification of Metais and Alloys. 2(43), 345-347. (in Polish).
[22] Lewandowski, J.L. (1971). Moulding materials. Warszawa Kraków: Wydawnictwo Naukowe PWN. (in Polish).
[23] Bobrowski, A. (2018). The phenomenon of dehydroxylation of selected mineral materials from the aluminosilicates group as the determinant factor of the knock-out improvement of moulding and core sands with inorganic binder. Wydawnictwo Archives of Foundry Engineering, Komisja Odlewnictwa PAN Katowice. (in Polish).
[24] Paduchowicz, P., Stachowicz, M. & Granat, K. (2017). Effect of Microwave Heating on Moulding Sand Properties with Gypsum Binder. Archives of Foundry Engineering. 17(3), 97-102.
[25] Sakwa, W., Wachelko, T. (1981). Foundry materials for molds and foundry cores. Katowice: Śląsk Publisher. (in Polish).
[26] Zhoua, X. , Yang J. & Quc. G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology. 183. 407-411.
[27] Aramide, F. O., Aribo, S. & Folorunso, D.O. (2011). Optimizing the moulding properties of recycled ilaro silica sand. Leonardo Journal of Sciences. 19, 93-102.
[28] Jordan, G., Eulenkamp, C., Calzada, E., Schillinger, B., Hoelzel, M., Gigler, A., Stanjek, H. & Schmahl, W.W. (2013). Quantitative in situ study of the dehydration of bentonite-bonded molding sands. Clays and Clay Minerals. 61(2), 133-140.
[29] Blaszkowski, K. (1975), Mold and core technology. Bielsko-Biała: WSiP. Wydanie III. (in Polish).
Go to article

Authors and Affiliations

B. Samociuk
1
B. Gal
1
D. Nowak
1

  1. Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

As a part of this work, an analysis of the current state of knowledge regarding the use of additive technology - binder jetting in the production of castings was made. The binder jetting (so-called 3D printing) has become the leading method of sand mold and core production. Within this paper types of molding and core sands with organic and inorganic binders that are and can be used in technology were analyzed. The need to carry out works aimed at developing pro-ecological molding / core sands with inorganic binders and organic binders with reduced harmfulness to the environment dedicated to binder jetting technology was noticed. The influence of technology parameters on the properties of molding / core sands and the properties of cast components was analyzed. It was shown that thanks to the unlimited shapes of the systems obtained with the use of additive technologies, it is possible to influence the rate of heat dissipation through the mold, which positively effects the process of solidification and crystallization of the castings.
Go to article

Bibliography

[1] Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A. & Ul Haq, M.I. (2022). 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers. 3, 33-42. DOI: 0.1016/j.susoc.2021.09.004.
[2] Shi, Y., Znang, J., Wen, S., Song, B., Yan, C., Wei, Q., Wu, J., Yin, Y., Zhou, J., Chen, R., Wei, Z., Jia, H., Yang, H & Nan, H. (2021). Additive manufacturing and foundry innovation. China Foundry. 18(4), 286-295. DOI: 10.1007/s41230-021-1008-8.
[3] Gawronová, M., Lichý, P., Kroupová, I., Obzina, T., Beňo, Nguyenová, I., Merta, V., Jezierski, J. & Radkovský, F. (2022). Evaluation of additive manufacturing of sand cores in terms of the resulting surface roughness. Heliyon. 8(10), 1-10. DOI: 10.1016/j.heliyon.2022.e10751.
[4] Shangguan, H., Kang, J., Deng, C., Hu, Y. & Huang, T. (2017). 3D-printed shell-truss sand mold for aluminum castings. Journal of Material Processing Technology. 250, 247-253. DOI: 10.1016/j.jmatprotec.2017.05.010.
[5] Hawaldar, N. & Zhang, J. (2018) A comparative study of fabrication of sand casting mold using additive manufacturing and conventional proces. International Journal of Advanced Manufacturing Technology. 97(1-4), 1037-1045. DOI: 10.1007/s00170-018-2020-z.
[6] Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017). 3D printing for rapid sand casting - A review. Journal of Manufacturing Processes. 29, 211-220. DOI: 10.1016/j.jmapro.2017.07.017.
[7] Zhang, Z., Wang, L., Zhang, L., Ma, P., Lu, B. & Du, C. (2021). Binder jetting 3D printing process optimization for rapid casting of green parts with high tensile strength. China Foundry. 18(4), 335-343. DOI: 10.1007/s41230-021-1057-z.
[8] Thiel, J., Ravi, S. & Bryan,t N. (2017). Advancements in materials for three-dimensional printing of molds and cores. International Journal of Metalcasting. 11(1), 3-13. DOI: 10.1007/s40962-016-0082-y.
[9] Mitra, S., Rodríguez de Castro A. & el Mansori, M. (2018). The effect of ageing process on three-point bending strength and permeability of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 97(1-4), 1241-1251, DOI: 10.1007/s00170-018-2024-8.
[10] Major-Gabryś, K., Hosadyna–Kondracka, M., Polkowska A., Warmuzek M. (2022). Effect of the biodegradable component addition to the molding sand on the microstructure and properties of ductile iron castings. Materials. 15(4), 1-14, DOI: 10.3390/ma15041552.
[11] Major-Gabryś, K. (2019) Environmentally friendly foundry molding and core sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911, DOI: 10.1007/s11664-019-03947-x.
[12] Puzio, S., Kamińska, J., Major-Gabryś, K., Angrecki, M. & Hosadyna-Kondracka, M. (2019). Microwave-hardened moulding sands with hydrated sodium silicate for modified ablation casting. Archives of Foundry Engineering. 19(2), 91-96,
[13] Major-Gabryś, K., Grabarczyk, A. & Dobosz, St.M., (2018). Modification of foundry binders by biodegradable material. Archives of Foundry Engineering. 18(2), 31-44, DOI: 10.24425/122498.
[14] Major-Gabryś, K., Grabarczyk, A., Dobosz, St.M. & Jakubski, J. (2016). New bicomponent binders for foundry moulding sands composed of phenol-furfuryl resin and polycaprolactone. Metalurgija. 55(3), 385-387.
[15] Major-Gabryś, K. (2016). Odlewnicze masy formierskie i rdzeniowe przyjazne dla środowiska. Katowice-Gliwice: Archives of Foundry Engineering. (in Polish)
[16] Major-Gabryś, K., Stachurek, I. & Hosadyna-Kondracka, M. (2022). The influence of biomaterial in a binder composition on biodegradation of waste from furan moulding sands. Archives of Foundry Engineering. 22(2), 17-24, DOI: 10.24425/afe.2022.140.222
[17] Major-Gabryś, K., Hosadyna-Kondracka, M., Skrzyński, M. & Stachurek, I. (2022). The influence of biomaterial in the binder composition on the quality of reclaim from furan no-bake sands. Archives of Civil Engineering. 68(4), 163-177, DOI: 10.2445/ace.2022.143032.
[18] Major-Gabryś, K., Stachurek, I., Hosadyna-Kondracka, M. & Homa, M. (2022). The influence of polycaprolactone on structural changes of dusts from molding sands with resin-based binder before and after the biodegradation process. Polymers. 14(13), 1-16. DOI: 10.3390/polym14132605.
[19] Snelling, D., Williams, C. & Druschitz, A. (2014). A comparison of binder burnout and mechanical characteristics of printed and chemically sand molds. In 2014 International Solid Freeform Fabrication Symposium. University of Texas at Austin.
[20] Dana, H.R. & el Mansori, M. (2020). Mechanical characterisation of anisotropic silica sand/furan resin compound induced by binder jet 3D additive manufacturing technology. Ceramics International. 46(11), 17867-17880, DOI: 10.1016/j.ceramint.2020.04.093.
[21] Coniglio, N., Sivarupan, T. & el Mansori, M. (2018). Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. International Journal of Advanced Manufacturing Technology. 94(5-8), 2175-2185. DOI: 10.1007/s00170-017-0861-5.
[22] Sivarupan, T., el Mansori, M., Daly, K., Mavrogordato, M.N. & Pierron, F. (2019) Characterisation of 3D printed sand moulds using micro-focus X-ray computed tomography. Rapid Prototyping Journal. 25(2), 404-416. DOI: 10.1108/RPJ-04-2018-0091.
[23] Cheng, Y., Li, Y., Yang, Y., Tang, K., Jhuang, F., L,i K. & Lu, C. (2022). Greyscale printing and characterization of the binder migration pattern during 3D sand mold printing. Additive Manufacturing. 56, 102929. DOI: 10.1016/j.addma.2022.102929.
[24] Vaezi, M. & Chua, C.K. (2011). Effects of layer thickness and binder saturation level parameters on 3D printing proces. International Journal of Advanced Manufacturing Technology. 53(1-4), 275-284. DOI: 10.1007/s00170-010-2821-1.
[25] Bryant, N., Frush, T., Thiel, J., MacDonald, E. & Walker, J. (2021). Influence of machine parameters on the physical characteristics of 3D-printed sand molds for metal casting. International Journal of Metalcasting. 15(2), 361-372. DOI: 10.1007/s40962-020-00486-3.
[26] Hackney, P.M. & Wooldridge, R. (2017). Characterisation of direct 3D sand printing process for the production of sand cast mould tools. Rapid Prototypin Journal. 23(1), 7-15. DOI: 10.1108/RPJ-08-2014-0101.
[27] Wang, Y., long Yu, R., kui Yin, S., Tan, R. & chun Lou, Y. (2021). Effect of gel time of 3D sand printing binder system on quality of sand mold/core. China Foundry. 18(6), 581-586. DOI: 10.1007/s41230-021-1085-8.
[28] Sama, S.R., Badamo, T. & Manogharan, G. (2020). Case studies on integrating 3D sand-printing technology into the production portfolio of a sand-casting foundry. International Journal of Metalcasting. 14(1), 12-24. DOI: 10.1007/s40962-019-00340-1.
[29] Triantaphyllou, A., Giusca, C., Macaulay, G., Reorig, F., Hoebel, M., Leach, R., Tomita, B. & Milne, K. (2015). Surface texture measurement for additive manufacturing. Surfdace Topografy: Metrology and Properties. 3(2), 024002. DOI: 10.1088/2051-672X/3/2/024002.
[30] Hartmann, C., van den Bosch, L., Spiegel, J., Rumschöttel, D. & Günther, D. (2022). Removal of stair-step effects in binder jetting additive manufacturing using grayscale and dithering-based droplet distribution. Materials. 15(11), 1-17. DOI: 10.3390/ma15113798.
[31] Deng, C., Kang, J., Shangguan, H., Huang, T., Zhang, X., Hu, Y. & Huang, T. (2018). Insulation effect of air cavity in sand mold using 3D printing technology. China Foundry. 15(1), 37-43. DOI: 10.1007/s41230-018-7243-y.
[32] Shangguan, H., Kang, J., Yi, J., Zhang, X., Wang, X., Wang, H. & Huang, T. (2018). The design of 3D-printed lattice-reinforced thickness-varying shell molds for castings. Materials. 11(4), 1-10. DOI: 10.3390/ma11040535.
[33] Wei, X., Wan, Y. & Liang, X. (2022). Effect of hollow core on cooling temperature in 3D printing. Journal of Physics: Conference Series. Institute of Physics. 2396, 012037, 1-9. DOI: 10.1088/1742-6596/2396/1/012037.
[34] ben Saada, M. & el Mansori, M. (2021). Assessment of the effect of 3D printed sand mold thickness on solidification process of AlSi13 casting alloy. The International Journal of Advanced Manufacturing Technology. 114, 1753-1766. DOI: 10.1007/s00170-021-06999-3.
[35] Sama, S.R., Wang, J. & Manogharan, G. (2018). Non-conventional mold design for metal casting using 3D sand-printing. Journal of Manufacturing Processes. 34, 765-775. DOI: 10.1016/j.jmapro.2018.03.049.
[36] Sama, S.R., Badamo, T., Lynch, P. & Manogharan, G. (2019). Novel sprue designs in metal casting via 3D sand-printing. Additive Manufacturing. 25, 563-578. DOI: 10.1016/j.addma.2018.12.009.
[37] Martinez, D., King, P., Sama, S.R., Sim, J., Toykoc, H. & Manogharan, G. (2023). Effect of freezing range on reducing casting defects through 3D sand-printed mold designs. International Journal of Advanced Manufacturing Technology. 126(1-2), 569-581. DOI: 10.1007/s00170-023-11112-x.
[38] Shuvo, M.M. & Manogharan, G. (2021). Novel riser designs via 3D sand printing to improve casting performance. Procedia Manufacturing. 53, 500-506. DOI: 10.1016/j.promfg.2021.06.052.
[39] Snelling, D., Williams, C. & Druschitz, A. (2019). Mechanical and material properties of castings produced via 3D printed mold. Additive Manufacturing. 27, 199-207, DOI: 10.1016/j.addma.2019.03.004.
[40] Hernández, F. & Fragoso, A. (2022). Fabrication of a stainless-steel pump impeller by integrated 3D sand printing and casting: mechanical characterization and performance study in a chemical plant. Applied Sciences (Switzerland). 12(7), 3539. DOI: 10.3390/app12073539.
[41] Szymański, P. & Borowiak, M. (2019). Evaluation of castings surface quality made in 3D printed sand moulds using 3DP technology. Lecture Notes in Mechanical Engineering. 201-212. DOI: 10.1007/978-3-030-16943-5_18.
[42] Skorulski, G. (2016). 3DP Technology for the manufacture of molds for pressure casting. Archives of Foundry Engineering. 16(3), 9-102. DOI: 10.1515/afe-2016-0058.
[43] Na, O., Kim, K. & Lee. H. (2021). Printability and setting time of csa cement with na2 sio3 and gypsum for binder jetting 3D printing. Materials. 14(11), 1-18. DOI: 10.3390/ma14112811.
[44] Zhang, L., Yang, X., Ran, S. Zhang, L., Hu, C. & Wang, H. (2023). Water-soluble sand core made by binder jetting printing with the binder of potassium carbonate solution. International Journal of Metalcasting. 1-12. DOI: 10.1007/s40962-022-00940-4.
[45] Goto, I., Kurosawa, K. & Matsuki, T. (2022). Effect of 3D-printed sand molds on the soundness of pure copper castings in the vicinity of as-cast surfaces. Journal of Manufacturing Processess. 77, 329-338. DOI: 10.1016/j.jmapro.2022.03.020.
[46] Castro-Sastre, M.Á., García-Cabezón, C., Fernández-Abia, A.I., Martín-Pedrosa, F. & Barreiro, J. (2021). Comparative study on microstructure and corrosion resistance of Al-Si alloy cast from sand mold and binder jetting mold. Metals (Basel). 11(9), 1421. DOI: 10.3390/met11091421.
[47] Kuchariková, L., Liptáková, T., Tillová, E., Kajánek, D., Schmidová, E. (2018). Role of chemical composition in corrosion of aluminum alloys. Metals. 8(8), 581. DOI: 10.3390/met8080581.
[48] Samuel, A.M., Doty, H.W., Valtierra, S. & Samuel, F.H. (2018). βAl5FeSi phase platelets-porosity formation relationship in A319.2 type alloys. International Journal of Metalcasting 12, 55-70. DOI: 10.1007/s40962-017-0136-9.
[49] Zheng, J., Chen, A., Yao, J., Ren, Y., Zheng, W., Lin, F., Shi, J., Guan, A. & Wang, W. (2022). Combination method of multiple molding technologies for reducing energy and carbon emission in the foundry industry. Sustainable Materials and Technologies. 34, e00522. DOI: 10.1016/j.susmat.2022.e00522.
[50] Kang, J. & Ma, Q. (2017). The role and impact of 3D printing technologies in casting. China Foundry. 14(3), 157-168. DOI: 10.1007/s41230-017-6109-z.
Go to article

Authors and Affiliations

Dawid Halejcio
1
ORCID: ORCID
Katarzyna Major-Gabryś
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering Department of Moulding Materials, Mould Technology and Non-ferrous Metals al. A. Mickiewicza 30, 30-059 Krakow

This page uses 'cookies'. Learn more