Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we proposed a novel design of U-slotted SIW antenna. Our antenna design is aimed to cover upper K-band and lower Ka-band spectrums, specifically from 24 GHz to 32 GHz. It has a compact square size of 5.2 x 5.2 mm2. We use a rectangular truncated corner to optimize the square radiator. The optimized rectangular truncated corner size of 2 x 0.8 mm2 gives an impedance bandwidth of 7.87 GHz. SIW cavity is constructed by using multiple metallic via-holes which are drilled in a dielectric substrate establishing. Next optimization, applying the U-shaped slot and SIW structure yield a wider impedance bandwidth of 8.89 GHz, there is about 1.02 GHz of impedance bandwidth enhancement. In addition, the SIW structure gives a higher gain of 7.63 dB and decreases the sidelobe level of -12.1 dB. Implementation of the SIW structure significantly decreases the size of antenna while keeping the antenna parameter’s performances.

Go to article

Authors and Affiliations

Subuh Pramono
Eddy Triyono
Budi Basuki Subagio
Download PDF Download RIS Download Bibtex

Abstract

Using the tunderwater corner reflector (CR) to simulate the acoustic scattering characteristics of the military target is a new technology to counter active sonar detection. Existing underwater CRs only have the ability to interfere with the acoustic field, but have limitations in acoustic wave modulation. Therefore, acoustic metasurfaces applied on CRs to enhance the ability of acoustic wave modulation has a great application prospect. A fast prediction method based on the Kirchhoff approximation (KA) and the ray tracing theory is proposed to calculate the acoustic scattering characteristics of CR with acoustic metasurfaces in grooves array type. The accuracy of the method is verified by the finite element method (FEM) simulation. The modulation effect of CR with grooves array in different gradient combinations on the structural scattering acoustic field is analyzed. The research shows that the CR with different combinations of the acoustic metasurface has an obvious modulation effect on the amplitude of the acoustic waves and the deflection of acoustic field. In particular, the grooves array in combination with positive and negative gradients has an obvious deflection impact on the scattering acoustic field.
Go to article

Authors and Affiliations

Jiaman Du
1
Zilong Peng
1
Lili Ge
1
Shijin Lyu
1 2
Fulin Zhou
3
Yan Liu
4
ORCID: ORCID

  1. School of Energy and Power Engineering Jiangsu University of Science and Technology, Zhenjiang, China
  2. National Key Laboratory on Ship Vibration and Noise, China Ship Science Research Center, Wuxi, China
  3. School of Naval Architecture, Ocean and Civi Engineering, Shanghai Jiao Tong University, Shanghai, China
  4. Shanghai Research Institute of Materials, Shanghai, China
Download PDF Download RIS Download Bibtex

Abstract

As the most recent video coding standard, High Efficiency Video Coding (HEVC) adopts various novel techniques, including a quad-tree based coding unit (CU) structure and additional angular modes used for intra encoding. These new techniques achieve a notable improvement in coding efficiency at the penalty of significant computational complexity increase. Thus, a fast HEVC coding algorithm is highly desirable. In this paper, we propose a fast intra CU decision algorithm for HEVC to reduce the coding complexity, mainly based on a key-point detection. A CU block is considered to have multiple gradients and is early split if corner points are detected inside the block. On the other hand, a CU block without corner points is treated to be terminated when its RD cost is also small according to statistics of the previous frames. The proposed fast algorithm achieves over 62% encoding time reduction with 3.66%, 2.82%, and 2.53% BD-Rate loss for Y, U, and V components, averagely. The experimental results show that the proposed method is efficient to fast decide CU size in HEVC intra coding, even though only static parameters are applied to all test sequences.
Go to article

Authors and Affiliations

Zhe Xu
Biao Min
Ray C.C. Cheung
Download PDF Download RIS Download Bibtex

Abstract

The magnesium alloy investment castings have greater potential for automobile and air-craft applications due to the higher strength to weight ratio of magnesium alloys and capability of the investment casting process to produce near net shape complex castings. The interfacial-mould metal reactions during investment casting of magnesium alloy inhibit successful production of quality castings. This paper presents the investigation done on the reactions at corners of AZ91 magnesium alloy cast part produced through investment casting. The stepped shape geometry of casting was selected to study the reactions at convex and concave corners of the cast part. The reacted surfaces were characterised using the SEM-EDX and XRD. The formation of oxides was observed on cast surface from characterisation. The temperature profile recorded at corners were helpful to understand the heat dissipation during the solidification of metal at corners. It was observed that the reactions occurred at the concave corner were more as compared to the convex corner of the cast part.

Go to article

Authors and Affiliations

Akash V. Vyas
Mayur P. Sutaria
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the basic cutting characteristics such as cutting forces, cutting power and its distribution, specific cutting energies were determined taking into account variable tool corner radius ranging from 400 to 1200 μm and constant cutting parameters typical for hard turning of a hardened 41Cr4 alloy steel of 55 ± 1 HRC hardness. Finish turning operations were performed using chamfered CBN tools. Moreover, selected roughness profiles produced for different tool corner radius were compared and appropriate surface roughness parameters were measured. The measured values of Ra and Rz roughness parameters are compared with their theoretical values and relevant material distribution curves and bearing parameters are presented.

Go to article

Bibliography

[1] J.P. Davim. Machining of Hard Materials. Springer, London, 2011.
[2] W. Grzesik. Advanced Machining Processes of Metallic Materials. Elsevier Science, 2008.
[3] W. Grzesik. Prediction of the functional performance of machined components based on surface topography: State of the art. Journal of Materials Engineering and Performance, 25(10):4460–4468, 2016. doi: 10.1007/s11665-016-2293-z.
[4] P. Nieslony, G.M. Krolczyk, K. Zak, R.W. Maruda, and S. Legutko. Comparative assessment of the mechanical and electromagnetic surfaces of explosively clad Ti–steel plates after drilling process. Precision Engineering, 47:104–110, Jan. 2017. doi: 10.1016/j.precisioneng.2016.07.011.
[5] R. Chudy and W. Grzesik. Comparison of power and energy consumption for hard turning and burnishing operations of 41CR4 steel. Journal of Machine Engineering, 15, 2015.
[6] Y.K. Chou and H. Song. Tool nose radius effects on finish hard turning. Journal of Materials Processing Technology, 148(2):259–268, 2004. doi: 10.1016/j.jmatprotec.2003.10.029.
[7] R. Meyer, J. Köhler, and B. Denkena. Influence of the tool corner radius on the tool wear and process forces during hard turning. The International Journal of Advanced Manufacturing Technology, 58(9):933–940, 2012. doi: 10.1007/s00170-011-3451-y.
[8] W. Grzesik, B. Denkena, K. Zak, T. Grove, and B. Bergmann. Energy consumption characterization in precision hard machining using CBN cutting tools. The International Journal of Advanced Manufacturing Technology, 85(9):2839–2845, 2016. doi: 10.1007/s00170-015-8091-1.
[9] Sandvik Coromant. Machining Handbook. www.sandvik.coromant.com.
[10] W. Grzesik and K. Zak. Producing high quality hardened parts using sequential hard turning and ball burnishing operations. Precision Engineering, 37(4):849–855, 2013. doi: 10.1016/j.precisioneng.2013.05.001.
[11] W. Grzesik, J. Rech, and K. Zak. Characterization of surface textures generated on hardened steel parts in high-precision machining operations. The International Journal of Advanced Manufacturing Technology, 78(9-12):2049–2056, 2015. doi: 10.1007/s00170-015-6800-4.
[12] H.A. Kishawy, A. Haglund, and M. Balazinski. Modelling of material side flow in hard turning. CIRP Annals – Manufacturing Technology, 55(1):85–88, 2006. doi: 10.1016/S0007-8506(07)60372-2.
[13] W. Grzesik. Generation and modelling of surface roughness in machining using geometrically defined cutting tools. In J.P. Davim, editor, Metal Cutting, chapter 6. Nova Science Publishers, New York, 2010.
[14] N. Schaal, F. Kuster, and K. Wegener. Springback in metal cutting with high cutting speeds. Procedia CIRP, 31:24–28, 2015. doi: 10.1016/j.procir.2015.03.065.
Go to article

Authors and Affiliations

Krzysztof Żak
1

  1. Faculty of Mechanical Engineering, Opole University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two vibrating circular membranes radiate acoustic waves into the region bounded by three infinite baffles arranged perpendicularly to one another. The Neumann boundary value problem has been investigated in the case when both sources are embedded in the same baffle. The analyzed processes are time harmonic. The membranes vibrate asymmetrically. External excitations of different surface distributions and different phases have been applied to the sound sources’ surfaces. The influence of the radiated acoustic waves on the membranes’ vibrations has been included. The acoustic power of the sound sources system has been calculated by using a complete eigenfunctions system.

Go to article

Authors and Affiliations

Wojciech P. Rdzanek
Krzysztof Szemela
Witold J. Rdzanek

This page uses 'cookies'. Learn more