Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 33
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Remains referred to Phorusrhacidae from the Cretaceous and Paleogene of the Antarctic Peninsula, and mainly known through informal and succinct descriptions, are reassigned here to other bird lineages recorded in the Antarctic continent. New records of ratites, pelagornithid birds, and penguins are added to the Upper Eocene avifauna of Seymour Island. Moreover, the original allocation for an alleged cursorial seriema−like bird from the Maastrichtian of Vega Island is refuted, and its affinities with foot−propelled diving birds are indicated. The indeterminate Pelagornithidae specimen represents the largest pseudo−toothed bird known so far. It is concluded that there is no empirical evidence for the presence of terror birds in Antarctica.
Go to article

Authors and Affiliations

Marcos M. Cenizo
Download PDF Download RIS Download Bibtex

Abstract

In this autobiographical note I describe my childhood and early University days in London, including the initiation of research on the Cenomanian chalks of southern England under the supervision of the late Jake Hancock, who was to become the closest of friends and collaborators for nearly 40 years. Appointment to a teaching post in Oxford in 1967 led, eventually, to the directorship of the Oxford University Museum of Natural History in 2003, until retirement in 2010. It was my good fortune to travel widely in connection with research on the Cretaceous across Europe and the United States, but particularly in KwaZulu Natal in South Africa, leading to a career long collaboration with Herbert Klinger (Cape Town). Collaboration has been the key to my research, collaboration with Jake and Herbie, and many others, including Bill Cobban, Andy Gale, Pierre Juignet, Herbert Summesberger, Irek Walaszczyk, and Willy Wright. These collaborations led to publications that dealt with ammonite faunas from The Antarctic Peninsula to Greenland, and from the United States Western Interior to Australia, as listed below.
Go to article

Authors and Affiliations

William James Kennedy
1 2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, United Kingdom
  2. Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Upper Cretaceous ammonites are described from six horizons in the mammal-bearing terrigenous-clastic sequences of western Uzbekistan, as follows: Upper Cenomanian, with Placenticeras sp. juv. cf. cumminsi Cragin, 1893 and Metoicoceras geslinianum (d’Orbigny, 1850); Lower Turonian with Tragodesmoceras cf. mauryae Kennedy and Wright, 1981, Placenticeras kharesmense (Lahusen, 1884), Watinoceras coloradoense (Henderson, 1908), Watinoceras amudariense (Arkhangelsky, 1916b), Metasigaloceras rusticum (J. Sowerby, 1823), Morrowites wingi (Morrow, 1935), Sciponoceras cf. bohemicum bohemicum (Fritsch, 1872), and Yezoites amudariensis (Arkhangelsky, 1916b); Middle Turonian with Collignoniceras woollgari woollgari (Mantell, 1822); Upper Turonian with Lewesiceras mantelli (Wright and Wright, 1951) and Placenticeras crassum Ilyin, 2020; a single Placenticeras semiornatum (d’Orbigny, 1850) from around the Coniacian/Santonian boundary, and Santonian Placenticeras polyopsis (Dujardin, 1837).
Go to article

Authors and Affiliations

David J. Ward
1 2
Chris King
Noel J. Morris
1 3
William James Kennedy
4

  1. Science Group, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  2. Crofton Court, 81 Crofton Lane, Orpington, Kent BR5 1HB, UK
  3. e-mail: niccamore@gmail.com
  4. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK, and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK
Download PDF Download RIS Download Bibtex

Abstract

Rare erratic clasts – extraneous rock types – occur in the Upper Cretaceous Chalk, including a local basal facies, the Cambridge Greensand. The underlying Upper Albian Gault Clay and the Hunstanton Red Chalk Formations have also yielded erratics. The discovery of these erratics, their description and the development of hypotheses to explain their origins and significance are reviewed. They became the subject of scientific interest with the interpretation of a particularly large example “The Purley Boulder” by Godwin-Austen (1858) as having been transported to its depositional site in the Chalk Sea by drifting coastal ice. Thin section petrography (1930–1951) extended knowledge of their diverse provenance. At the same time the Chalk Sea had become interpreted as warm, so drifting ice was considered out of context, and the preferred agents of transport were entanglement in the roots of drifting trees, as holdfasts of floating marine algae, or as stomach stones of marine reptiles or large fish. Reconsideration of their occurrence, variable nature and sedimentary setting suggests that there are three zones in the English Chalk where erratics may be less rare (1) near the base of the Cenomanian in the Cambridge area, (2) the Upper Cenomanian–Middle Turonian in Surrey, and (3) the Upper Coniacian and Lower Santonian of Kent. The assemblage from each level and their sedimentary setting is subtly different. Present evidence suggests that the erratics found in the Upper Albian–Lower Cenomanian and the Upper Cenomanian–Middle Turonian zones represent shallow water and shoreline rocks that were transported into the Chalk Sea by coastal ice (fast-ice) that enclosed coastal marine sediments as it froze. The Upper Coniacian and Lower Santonian erratics from Rochester and Gravesend in Kent are gastroliths.
Go to article

Bibliography

Ballantyne, C.K. 2018. Periglacial Geomorphology. 454 pp. John Wiley and Sons; Hoboken.
Ben, D.I. and Evans, D.J.A. 2013. Glaciers and glaciation. 2nd Edition, 802 pp. Routledge; London and New York.
Bennett, M.R. and Doyle, P. 1996. Global cooling inferred from dropstones in the Cretaceous – fact or wishful thinking? Terra Nova, 8, 182–185.
Bennett, M.R., Doyle, P. and Mather, A.E. 1996. Dropstones – their origins and significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 331–339.
Bonney, T.G. 1873. On the Upper Greensand or Chloritic Marl of Cambridgeshire. Proceedings of the Geologist Association, 3, 1–20.
Cayeux, L. 1897. Craie du Bassin de Paris. Mémoire de la Societé géologique du Nord, 4, 418–425.
Chumakov, N.M. 1998. Stones scattered in Cretaceous deposits of south England. Lithology and Mineral Resources, 33, 313–326.
Cope, J.C.W., Ingham, J.K. and Rawson, P.F. (Eds) 1992. Atlas of Palaeogeography and Lithofacies. Geological Society London, Memoir, 13, 153 pp.
Dibley, G.E. 1918. Additional notes on the Chalk of the Medway valley, Gravesend, west Kent, north-east Surrey, and Grays (Essex). Proceedings of the Geologists’ Association, 29, 68–93.
Double, I.S. 1931. Some boulders from the Chalk of Betch- worth, Surrey. Geological Magazine, 68, 65–71.
Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R. 1998. Glacimarine sedimentary processes and facies on the polar north Atlantic margins. Quaternary Science Reviews, 17, 243–272.
Fletcher, T.P. 1977. Lithostratigraphy of the Chalk (Ulster White Limestone Formation) in Northern Ireland. Report of the Institute of Geological Sciences, 77/24.
Forbes, D.L. and Taylor, R.B. 1994. Ice in the shore zone and the geomorphology of cold coasts. Progress in Physical Geography, 18, 59–89.
Gallois, R.W. 1994. Geology of the country around King’s Lynn and The Wash. Memoir of the British Geological Survey, sheet 145 and part of 129 (England and Wales), 210 pp. HMSO; London.
Gilbert, R. 1990. Rafting in glaciomarine environments. In: Dowdeswell, J.A. and Scourse, J.D. (Eds), Glaciomarine environments: processes and sediments. Geological Society London, Special Publications, 53, 10–20.
Godwin-Austen, R. 1858. On a boulder of granite found in the “White Chalk” near Croydon, and on the extraneous stones from that Formation. Quarterly Journal of the Geological Society of London, 14, 252–266.
Godwin-Austen, R. 1860. On the occurrence of a mass of coal in the Chalk of Kent. Quarterly Journal of the Geological Society of London, 16, 326–327.
Grove, R. 1976. Coprolite mining in Cambridgeshire. The Agricultural History Review, 24, 36–43. Haq, B.U. 2014. Cretaceous eustacy revisited. Global and Planetary Change, 113, 44–58.
Hansom, J.D., Forbes, D.L. and Etienne S. 2014. The rock coasts of polar and sub-polar regions. In: Kennedy, D.M., Stephenson, D.M. and Naylor, L.A. (Eds), Rock Coast Geomorphology: A Global Synthesis. Geological Society London, Memoirs, 40, 263–281.
Hawkes, L. 1943. The erratics of the Cambridge Greensand; their nature, provenance, and mode of transport . Quarterly Journal of the Geological Society of London, 99, 93–104.
Hawkes, L. 1951. The erratics of the English Chalk. Proceedings of the Geologists’ Association. 62, 257–268.
Hu, X.-F., Jeans, C.V. and Dickson, J.A.D. 2012. Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcitefilled vugs in brachiopods. Acta Geologica Polonica, 62, 143–172.
Janetschke, N., Niebuhr, B. and Wilmsen, M. 2015. Inter-regional sequence stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations around the Mid-European Island. Cretaceous Research, 56, 530–549.
Jeans, C.V. 1967. The Cenomanian Rocks of England. Unpublished PhD thesis, 156 pp. University of Cambridge; Cambridge.
Jeans, C.V. 2006. Clay mineralogy of the Cretaceous strata of the British Isles. Clay Minerals, 41, 47–150.
Jeans, C.V., Long, D., Hall, M.A., Bland, D.J. and Cornford, C. 1991. The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian–Turonian δ13C anomaly. Geological Magazine, 128, 604–632.
Jeans, C.V., Merriman, R.J., Mitchell, J.G. and Bland. D.J. 1982. Volcanic clays in the Cretaceous of southern England and Northern Ireland. Clay Minerals, 17, 105–156.
Jeans, C.V., Wray, D. S., Williams, T.C., Bland, D.J. and Wood, C.J. 2021. Redox conditions, glacio-eustasy, and the status of the Cenomanian–Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England. Acta Geologica Polonica, 71, 103–152.
Jukes-Browne, A.J. and Hill, W. 1903. The Cretaceous rocks of Britain, Vol. II – The Lower and Middle Chalk of England. Memoir of the Geological Survey, 568 pp. HMSO; London.
Jukes-Browne, A.J. and Hill, W. 1904. The Cretaceous rocks of Britain, Vol. III – The Upper Chalk of England. Memoir of the Geological Survey of Great Britain, 566 pp. HMSO; London.
Lefort, J.-P., Monnier, J.-L. and Danukalova, G. 2019. Transport of Late Pleistocene loess particles by katabatic winds during the lowstands of the English Channel. Journal of the Geological Society of London, 179, 1169–1181.
Lisitzin, A.P. 2002. Sea-ice and iceberg sedimentation in the ocean: recent and past, 564 pp. Springer-Verlag; Berlin and Heidelberg.
Markwick, P.J. and Rowley, D.B. 1998. The geological evidence for Triassic to Pleistocene glaciations: implications for eustacy. In: Pindell, J. and Drake, C.L. (Eds), Palaeogeographic evolution and non-glacial eustacy: northern South America. SEPM Special Publication, 58, 17–43.
Mortimore, R.N., Wood, C.J. and Gallois, R.W. 2001. British Upper Cretaceous Stratigraphy. Geological Conservation Review Series, 23, 558 pp. Joint Nature Conservation Committee; Peterborough.
Osterkamp, T.E. and Gosink, J.P. 1984. Observations and analyses of sediment-laden sea ice. In: Barnes, P.W., Schell, D.M. and Reimnitz, E. (Eds), The Alaskan Beaufort Sea: ecosystems and environments, 73–93 pp. Academic Press; New York.
Price, G.D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews, 48, 183–210.
Rastall, R.H. 1930. The petrography of the Hunstanton Red Rock . Geological Magazine, 67, 436–458.
Schmidt, K. and Schreyer, E.D. 1973. Erratische Gerölle im Turon (Soester Grünsand) des südöstlichen Münsterlandes (Westfalen). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1973, 297–312.
Sollas, W.J. and Jukes-Browne, A.J. 1873. On the included rock-fragments of the Cambridge Upper Greensand. Quarterly Journal of the Geological Society of London, 29, 11–16.
Stebbing, W.P.D. 1897. On two boulders of granite from the Middle Chalk of Betchworth, Surrey. Quarterly Journal of the Geological Society of London, 53, 213–220.
Thomas, G.S.P. and Connell, R.J. 1985. Iceberg drop, dump, and grounding structures from the Pleistocene glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology, 55, 243–249.
Torsvik, T.H. and Cocks, L.R.M. 2017. Earth history and palaeogeography, 317 pp. Cambridge University Press; Cambridge.
Whittle, C.H. and Onorato, L. 2000. On the origin of gastroliths determining the weathering environment of rounded and polished stones by scanning-electron-microscope examination. In: Lucas, S.G. and Heckert, A.B. (Eds), Dinosaurs of New Mexico. Bulletin of the New Mexico Museum of Natural History and Science, 17, 69–73.
Wilmsen, M., Niebuhr, B. and Hiss, M. 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies, 51 (1-4), 242–263.
Wings, O. 2007. A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52, 1–16.
Woolnough,W.G. and David, T.W.E. 1926. Cretaceous glaciation in Central Australia. Quarterly Journal of the Geological Society, London, 82, 332–351.
Go to article

Authors and Affiliations

Christopher V. Jeans
1
Ian M. Platten
2

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  2. 4 Little Youngs, Welwyn Garden City, Hertfordshire, AL8 6SL, UK
Download PDF Download RIS Download Bibtex

Abstract

The Campanian–Paleocene Jaworzynka Formation, a part of the Magura Nappe succession in the Polish Outer Carpathians, is described in terms of its detailed litho- and biostratigraphy. The formation stretches along the marginal part of the Siary Unit, from the Jaworzynka stratotype area in the Silesian Beskid Mts up to the Mszana Dolna area in the Beskid Wyspowy Mts. Its equivalent in the Moravskoslezské Beskydy Mts of the Czech Republic is the Soláň Formation. In the stratotype area, the formation displays complex structure. We distinguish four lithological units, i.e., Biotite Sandstone and Shale (I), Shale (II), Mutne Sandstone Member (III) and Thin-bedded Turbidite (IV) and provide the first detailed biostratigraphy of particular units. The first unit forms the most prominent part of the formation. It was deposited in the Middle Campanian–earliest Maastrichtian within the upper part of Caudammina gigantea Zone up to the lower part of the Rzehakina inclusa Zone. The second unit occurs only locally and its age is limited to the Maastrichtian, to the Rzehakina inclusa Zone. The third unit is composed of thick-bedded sandstones that in some parts may form more than the half of the total thickness of the formation. It is Late Maastrichtian–Danian in age and is placed in the upper part of the Rzehakina inclusa Zone and the lower part of the Rzehakina fissistomata Zone. It is usually covered by a thin package of thin-bedded turbiditic sandstone and shales of Danian–Thanetian age with foraminifera of the Rzehakina fissistomata Zone.
Go to article

Bibliography

Alexandrowicz, S.W., Birkenmajer, K., Cieśliński, S., Dadlez, R., Kutek, J., Nowak, W. Orłowski, S., Szulczewski, M. and Teller, L. 1975. The principles of Polish classification, terminology and stratigraphic nomenclature. Instrukcje i metody badań, 33, 1–63. [In Polish with English summary]
Arreguín-Rodrîguez, G.J., Alegret, L. and Ortiz, S. 2013. Glomospira acme during the paleocene-eocene thermal maximum: Response to CaCO3 Dissolution or to Ecological Forces? Journal of Foraminiferal Research, 43, 40–54.
Bąk, K. 2004. Deep-water agglutinated foraminiferal changes across the Cretaceous/Tertiary and Paleocene/Eocene transitions in the deep flysch environment; eastern part of Outer Carpathians (Bieszczady Mts, Poland). In: Bubík, M. and Kaminski, M.A. (Eds), Proceedings of the Six International Workshop on Agglutinated Foraminifera, Prague, Czech Republic, September 1–7, 2001. Grzybowski Foundation Special Publication, 8, 1–56.
Beckmann, J.-P., Bolli, H.M., Kleboth, P. and Proto-Decima, F. 1982. Micropaleontology and biostratigraphy of the Campanian to Paleocene of the Monte Giglio, Bergamo Province, Italy. Memiore di Scienze Geologiche, 35, 91–172.
Bieda, F., Geroch, S., Koszarski, L., Książkiewicz, M. and Żytko, K. 1963. Stratigraphie des Karpates externes polonaises. Biuletyn Instytutu Geologicznego, 182, 5–174. [In Polish with French summary]
Birkenmajer, K. and Oszczypko, N. 1989. Cretaceous and Palaeogene lithostratigraphic units of the Magura Nappe, Kynica Subunit, Carpathians. Annales Societatis Geologorum Poloniae, 59, 154–181.
Bogacz, K., Dziewański, J., Jednorowska, A. and Węcławik, S. 1979. Paleogene deposits of the Magura nappe near Owczary (Polish Flysch Carpathians). Annales Societatis Geologorum Poloniae, 59, 43–65. [In Polish with English summary]
Bubík, M. 1995. Cretaceous to Paleogene agglutinated foraminifera of the Bile Karpaty unit (West Carpathians, Czech Republic). In: Kaminski, M.A., Geroch, S. and Gasiński, M.A. (Eds), Proceedings of the Fourth International Workshop on Agglutianted Foraminifera, Krakow Poland, September 12–19, 1993. Grzybowski Foundation Special Publication, 3, 71–116.
Bubík, M., Bąk, M. and Švábenická, L. 1999. Biostratigraphy of the Maastrichtian to Paleocene distal flysch sediments of the Raca Unit in the Uzgrun section (Magura group of nappes, Czech Republic). Geologica Carpathica, 50, 33–48.
Burtan, J. 1964a. Detailed Geological Map of Poland in Scale 1:50,000, Mszana Dolna Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1964b. Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1973a. Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1973b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Burtan, J. 1978. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Mszana Dolna Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Burtan, J., Nescieruk, P. and Wójcik, A. 2017. Detailed Geological Map of Poland in Scale 1: 50,000, Wisła Sheet. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy; Warszawa.
Burtan, J. and Skoczylas-Ciszewska, K. 1964a. Detailed Geological Map of Poland in Scale 1:50,000, Limanowa Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. and Skoczylas-Ciszewska, K. 1964b. Detailed Geological Map of Poland in Scale 1:50,000, Męcina Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J., Sokołowski, S., Sikora, W. and Żytko, K. 1956. Detailed Geological Map of Poland in Scale 1:50,000, Milówka Sheet. Wydawnictwa Geologiczne; Warszawa.
Burtan, J., Sokołowski, S., Sikora, W. and Żytko, K. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. and Szymakowska, F. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Osielec Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Chodyń, R. 2002. The geological structure of the Siary Zone in the Mutne area based on the lithostratigraphic profile of the Magura Nappe between Zwardoń and Sucha Beskidzka (Flysch Carpathians, southern Poland). Przegląd Geologiczny, 50, 139–147. [In Polish with English summary]
Cieszkowski, M. 1992. Michalczowa Zone a new unit of the Fore-Magura Zone, West Carpathians, South Poland. Kwartalnik AGH Geologia, 18, 1–125. [In Polish with English summary]
Cieszkowski, M., Golonka, J., Waśkowska-Oliwa, A. and Chodyń, R. 2007. Type locality of the Mutne Sandstone Member of the Jaworzynka Formation, Western Outer Carpathians, Poland. Annales Societatis Geologorum Poloniae, 77, 269–290.
Cieszkowski, M., Golonka, J., Waśkowska-Oliwa, A. and Chrustek, M. 2006. Geological structure of the Sucha Beskidzka region – Świnna Poręba (Polish Flysch Carpathians). Kwartalnik AGH Geologia, 32, 155–201. [In Polish with English summary]
Cieszkowski, M. and Waśkowska-Oliwa, A. 2001. Skawce Sandstone Member a new lithostratigraphic unit of the Łabowa Shale Formation (Paleocene–Eocene: Magura Nappe, Siary Subunit) Polish Outer Carpathians. Bulletin of the Polish Academy of Sciences. Earth Sciences, 49, 137–149.
Cieszkowski, M., Waśkowska, A. and Kaminski, M.A. 2011. Deep-water agglutinated foraminifera in Paleogene hemipelagic sediments of the Magura Basin in the Sucha Beskidzka area – variegated shales of the Łabowa Shale Formation. In: Bąk, M., Kaminski, M.A. and Waśkowska, A. (Eds), Integrating Microfossil Records from the Oceans and Epicontinental Seas. Kraków, Grzybowski Foundation, Special Publication 17, 53–63.
Cieszkowski, M., Waśkowska-Oliwa, A. and Machaniec, E. 2000. Lithofacies and micropaleontological data of the Upper Cretaceous deposits of the Subsilesian Unit in the Sułkowice tectonic window (Outer Carpathians, Poland). Slovak Geological Magazine, 6, 205–207.
Geroch, S. 1960. Microfaunal assemblages from the Cretaceous and Paleogene Silesian unit in the Beskid Śląski Mountains. Biuletyn Instytutu Geologicznego, 153, 1–138. [In Polish with English summary]
Geroch, S., Jednorowska, A., Książkiewicz, M. and Liszkowa, J. 1967. Stratigraphy based upon microfauna in the Western Polish Carpathians. Biuletyn Instytutu Geologicznego, 211, 185–282.
Geroch, S. and Nowak, W. 1984. Proposal of zonation for the Late Tithonian–Late Eocene, based upon arenaceous Foraminifera from the Outer Carpathians, Poland. In: Oertli, H.J. (Ed.), BENTHOS ‘83: 2nd International Symposium on Benthic Foraminifera (Pau, April 11–15, 1983), 225–239. ESO REP and TOTAL CFP; Pau and Bordeoux, Elf-Aquitane.
Giusberti, L., Boscolo Galazzo, F. and Thomas, E. 2016. Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section). Climate of the Past, 12, 213–240.
Golonka, J. and Krobicki, M. 2004. Jurassic paleogeography of the Pieniny and Outer Carpathian basins. Rivista Italiana di Paleontologica Stratigrafica, 110, 5–14.
Golonka, J., Pietsch, K., Marzec, P., Kasperska, M., Dec, J. and Cichostępski, K. 2019a. Deep structure of the Pieniny Klippen Belt in Poland. Swiss Journal of Geosciences, 112, 475–506.
Golonka, J., Ślączka, A., Waśkowska, A. and Krobicki, M. 2013. Geology of the western part of the Polish Outer Carpathians. In: Krobicki, M. and Feldman-Olszewska, A. (Eds), Deep-Sea Flysh Sedimentation – Sedimentological Aspects of Carpathian Basins, 11–62. Państwowy Instytut Geologiczny; Warszawa.
Golonka, J. and Waśkowska, A. 2012. The Beloveža Formation of the Rača Unit in the Beskid Niski Mts (Magura Nappe, Polish Flysch Carpathians) and adjacent parts of Slovakia and their equivalents in the western part of the Magura Nappe; Remarks on the Beloveža Formation – Hieroglyphic Beds. Geological Quarterly, 56, 821–832.
Golonka, J., Waśkowska, A. and Ślączka, A. 2019b. The Western Outer Carpathians: Origin and evolution. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170, 229–254.
Golonka, J. and Wójcik, A. 1978a. Detailed Geological Map of Poland in Scale 1: 50,000, Jeleśnia Sheet. Wydawnictwa Geologiczne; Warszawa.
Golonka, J. and Wójcik, A. 1978b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Hanzlíková, E. 1983. Paleogene stratigraphy and foraminifera of the Outer Flysch Belt. Miscellanea Micropaleontologica; Knihovnicka Zemniho Plynu a Nafty, 4, 43–71. [In Czech with English summary].
Jednorowska, A. 1968. Foraminiferal assamblages in the outer zone of the Magura Unit (Carpathians) and their stratigraphic meaning. Prace Geologiczne Polskiej Akademii Nauk, 50, 1–89. [In Polish with English summary]
Jednorowska, A. 1975. Small Foraminifera assemblages in the Paleocene of the Polish Western Carpathians. Studia Geologica Polonica, 47, 1–103. [In Polish with English summary]
Jurkiewicz, H. 1967. Foraminifers in the Sub-Menilitic Palaeogene of the Polish Middle Carpathians. Biuletyn Instytutu Geologicznego, 210, 5–128. [In Polish with English summary]
Kaminski, M.A. and Gradstein, F. 2005. Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 10, 1–546.
Kennet, J.P. and Scott, L.D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extincions at the end of the Palaeocene. Nature, 354, 56–58.
Kopciowski, R., Zimnal, Z., Chrząstowski J., Jankowski, L., and Szymakowska, F. 2014. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Gorlice Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish]
Koszarski, L., Sikora, W. and Wdowiarz, S. 1974. The Flysch Carpathians. Polish Carpathians. In: Mahel, M. (Ed.), Tectonic of the Carpathian-Balkan Regions, 180–197. Geologia Ust. D. Stura; Bratislava.
Książkiewicz, M. 1974a. Detailed Geological Map of Poland in Scale 1: 50,000, Sucha Beskidzka Sheet. Wydawnictwa Geologiczne; Warszawa.
Książkiewicz, M. 1974b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Sucha Beskidzka Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Mahel, M. 1968. Regional Geology of Czechoslovakie: Part II. The West Carpathians, 723 pp. Geological Survey of Czechoslovakia; Praha.
Malata, E. 1981. The stratigraphy of the Magura nappe in the western part of the Beskid Wysoki Mts, Poland, based on microfauna. Biuletyn Instytutu Geologicznego, 331, 103– 113. [In Polish with English summary]
Malata, E. 2002. Albian–Early Miocene foraminiferal assemblages of the Magura Nappe (Polish Outer Carpathians). Geologica Carpathica, Special issue, 53, 77–79.
Malata, E., Malata, T. and Oszczypko, N. 1996. Litho- and biostratigraphy of the Magura Nappe in the eastern part of the Beskid Wyspowy Range (Polish Western Carpathians). Annales Societatis Geologorum Poloniae, 66, 269–284.
Matĕjka, A. and Roth, Z. 1949. Předbĕžné poznámky ku geologii Maravsko-selzských Beskyd. Sborník Státního geologického ústavu Československé republiky, 16, 293–328.
Matĕjka, A. and Roth, Z. 1956. Geologie magurského flyše v severním povodí Váhu mezi Bytčou a Trenčínem. Rozpravy Ústředního ústavu geologického, 22, 1–22.
Mello, J. (Ed.), Potfaj, M., Teťák, F., Havrila, M., Rakús, M., Buček, S., Filo, I., Nagy, A., Salaj, J., Maglay, J., Pristaš, J., Fordinál, K. 2005. Geological Map of the Middle Váh Valley (Stredné Považie) 1: 50,000. State Geological Institute of Dionýz Štúr; Bratislava.
Morgiel, J.J. and Olszewska, B. 1981. Biostratigraphy of the Polish External Carpathians based on agglutinated foraminifera. Micropaleontology, 27, 1–30.
Morgiel, J. and Szymakowska, F. 1978. Palaeocene and Eocene Stratigraphy of the Skole Unit. Biuletyn Instytutu Geologicznego, 310, 39–91.
Nowak, W. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Lachowice Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Olszewska, B. 1980. Stratigraphy of the middle part of the Dukla Unit in the Polish Carpathians based on foraminifera (Upper Cretaceous–Paleogene). Biuletyn Instytutu Geologicznego, 326, 59–97. [In Polish with English summary]
Olszewska, B. 1997. Foraminiferal biostratigraphy of the Polish Outer Carpathians: a record of basin geohistory. Annales Societatis Geologorum Poloniae, 67, 325–337.
Oszczypko, N. 1991. Stratigraphy of the Palaeogene deposits of the Bystrica subunit (Magura Nappe, Polish Outer Carpathians). Bulletin of Polish Academy of Sciences, Earth Sciences, 39, 415–431.
Oszczypko, N. 2006. Late Jurassic–Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169–194.
Oszczypko, N., Malata, E., Bąk, K., Kędzierski, M. and Oszczypko- Clowes, M. 2005. Lithostratigraphy, biostratigraphy and palaeoenvironment of the Upper Albian–Lower/ Middle Eocene flysch deposits in the Beskid Wyspowy and Gorce Ranges; Polish Outer Carpathians, Magura Nappe; Bystrica and Rača subunits. Annales Societatis Geologorum Poloniae, 75, 27–69.
Oszczypko, N. and Oszczypko-Clowes, M. 2009. Stages in the Magura Basin: a case study of the Polish sector (Western Carpathians). Geodinamica Acta, 22, 83–100.
Pesl, V. 1968. Lithofacies of Paleogene in the Magura Unit of the Outer Carpathian Flysch on the Territory of Czechoslovakia and Poland. Sbornik Geologickych Vied, Západne Karpaty, 9, 71–118. [In Czech with English summary]
Picha, F.J., Stráník, Z. and Krejčí, O. 2006. Geology and Hydrocarbon Resources of the Outer West Carpathians and their foreland, Czech Republic. In: Golonka, J. and Picha, F.J. (Eds), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. American Association of Petroleum Geologists, Memoir, 84, 49–175.
Pivko, D. 2002. Geology of Pilsko Mountain and surroundings (Flysch belt on Northern Orava). Acta Geologica Universitatis Comenianae, 57, 67–94.
Pokorny, V. 1960. Microstratigraphie et biofaciès du flysch Carpatique de la Moravie Méridionale (Tchécoslovaquie). Revue de l’Institut Français du Pétrole et Annales des Combustibles Liquides, 15, 1099–1141.
Potfaj, M. (Ed.), Šlepecký, T., Maglay, J., Hanzel, V., Boorová, D., Žecová, K., Kohút, M., Nagy, A., Teťák, F., Vass, B., Sandanus, M., Buček, S., Sýkora, M., Köhler, E., Fejdiová, O., Kandera, K., Samuel, O., Bubík, M., Beleš, F., 2003: Explanations for Geological Map of the Kysuce Region 1: 50,000, 193 pp. State Geological Institute of Dionýz Štúr; Bratislava. [In Slovak with English summary]
Puglisi, D. 2009. Early Cretaceous flysch from Betic-Maghrebian and Europe Alpine Chains (Gibraltar Strait to the Balkans): comparison and palaeotectonic implications. Geologica Balcanica, 38, 15–22.
Racki, G. and Narkiewicz, M. 2006. Polish Principles of Stratigraphy, 77 pp. Państwowy Instytut Geologiczny; Warszawa.
Rajchel, J. 1990. Lithostratigraphy of Upper Paleocene and Eocene deposits of the Skole Unit. Zeszyty naukowe Akademii Górniczo-Hutniczej – Geologia, 48, 1–122. [In Polish with English summary]
Ryłko, W. and Paul, Z. 2014. Detailed Geological Map of Poland in Scale 1:50,000, Lachowice Sheet. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy; Warszawa.
Ryłko, W., Żytko, K. and Rączkowski, W. 1992. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Czadca-Ujsoły Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Schmid, S.M., Bernoulli, D., et al. 2008. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
Sikora, W. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Sikora, W. 1967. Detailed Geological Map of Poland in Scale 1:50,000, Gorlice Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Sikora, W. and Żytko, K. 1960. Geology of the Beskid Wysoki Range south of Żywiec (Western Carpathians). Biuletyn Instytutu Geologicznego, 141, 61–204. [In Polish with English summary]
Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N. and Papadyuk, I. 2006. The General Geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka, J. and Picha, F.J. (Eds), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. American Association of Petroleum Geologists, Memoir, 84, 221–258.
Ślączka, A. and Miziołek, M. 1995. Geological setting of Ropianka Beds in Ropianka (Polish Carpathians). Annales Societatis Geologorum Poloniae, 65, 29–41. [In Polish with English summary]
Speijer, R., Scheibner, C., Stassen, P. and Morsi, A.M. 2012. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene– Eocene thermal maximum (PETM). Austrian Journal of Earth Sciences, 105, 6–16.
Švábenická, L., Bubík, M., Krejčí, O. and Stráník, Z. 1997. Stratigraphy of Cretaceous sediments of the Magura group of nappes in Moravia (Czech Republic). Geologica Carpathica, 48, 179–191.
Świdziński, H. 1947. Stratigraphic Dictionary of the Northern Flysch Carpathians. Biuletyn Państwowego Instytutu Geologicznego, 37, 1–124. [In Polish]
Teťák, F. 2008. Paleogene depositional systems and paleogeography of the submarine fans in the western part of the Magura Basin (Javorníky Mountains, Slovakia). Geologica Carpathica, 59, 333–344.
Teťák, F., Cieszkowski, M., Golonka, J., Waśkowska, A. and Szczęch, M. 2017: The Ropianka Formation of the Bystrica Zone (Magura Nappe, Outer Carpathians): proposal for a new reference section in northwestern Orava. Annales Societatis Geologorum Poloniae, 87, 257–272.
Tet’ák, F., Pivko, D. and Kováčik, M. 2019. Depositional systems and paleogeography of Upper Cretaceous–Paleogene deep-sea flysch deposits of the Magura Basin (Western Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology, 533 (in press).
Waśkowska-Oliwa, A. 2000. Biostratigraphic and paleoecologic interpretation of the agglutinated foraminifera assemblages of the Paleocene–Middle Eocene deposits of the Magura Nappe in the area of Sucha Beskidzka (Outer Carpathians). Przegląd Geologiczny, 48, 331–335.
Waśkowska-Oliwa, A. 2005. Foraminiferal palaeodepth indicators from the lower Paleogene deposits of the Subsilesian Unit (Polish Outer Carpathians). Studia Geologica Polonica, 124, 297–324.
Waśkowska-Oliwa, A. 2008. The Paleocene assemblages of agglutinated foraminifera from deep-water basinal sediments of the Carpathians (Subsilesian Unit, Poland): biostratigraphical remarks. In: Kaminski, M.A. and Coccioni, R. (Eds), Proceedings of the Seventh International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 13, 1–39.
Waśkowska, A. 2011a. Response of Early Eocene deep-water benthic foraminifera to volcanic ash falls in the Polish Outer Carpathians: Palaeocological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 50–64.
Waśkowska, A. 2011b. The Early Eocene Saccamminoides carpathicus assemblage in the Outer Flysch Carpathians. In: Kaminski, M.A. and Filipescu, S. (Eds), Proceedings of the Eighth International Workshop On Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 16, 331–341.
Waśkowska, A., Cieszkowski, M., Golonka, J. and Kowal-Kasprzyk, J. 2014. Paleocene sedimentary record of ridge geodynamics in Outer Carpathian basins (Subsilesian Unit). Geologica Carpathica, 65, 35–54.
Waśkowska, A., Golonka, J., Machowski, G. and Pstrucha, E. 2018. Potential source rocks in the Ropianka Formation of the Magura Nappe (Outer Carpathians, Poland) – geochemical and foraminiferal case study. Geology, Geophysics and Environment, 44, 49–68.
Waśkowska, A., Joniec, A., Kotlarczyk, J. and Siwek, P. 2019. The Late Createcous Fucoid Marl of the Ropianka Formation in the Kąkolówka structure (Skole Nappe, Outer carpathians, Poland) – lithology and foraminiferal biostratigraphy. Annales Societatis Geologorum Poloniae, 89, 259–284.
Watycha, L. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Mszana Górna Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Węcławik, S. 1969. The geological structure of the Magura Nappe between Uście Gorlickie and Tylicz. Prace Geologiczne Komisji Nauk Geologicznej PAN, Oddział w Krakowie, 59, 1–101. [In Polish with English summary]
Żytko, K. 1962. Stratigraphy of the Magura Unit in the south western part of the Beskid Żywiecki (Flysch Carpathians). Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Geologiques et Geographiques, 10, 167–177.
Żytko, K. 1963. Detailed Geological Map of Poland in Scale 1:50,000, Milówka Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Garlicka, I., Nemčok, J., Eliáš, M., Dvořák, J., Stránik, Z., Rakus, O. and Matějovska, O. 1989. Geological Map of the Western Outer Carpathians and their Foreland without Quaternary formations. Państwowy Instytut Geologiczny; Warszawa.
Go to article

Authors and Affiliations

Anna Waśkowska
1
Jan Golonka
1
Krzysztof Starzec
1
Marek Cieszkowski
2

  1. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Jagiellonian University, Institute of Geography and Geology, Gronostajowa 3a, 30-387 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Eleven ammonites species are described from the condensed phosphate beds of Mangyshlak (in north-western Kazakhstan): Lewesiceras mantelli (Wright and Wright, 1951), Subprionocyclus neptuni (Geinitz, 1849), Prionocyclus spp., Allocrioceras angustum (J. de C. Sowerby, 1850), Hyphantoceras ( Hyphantoceras) reussianum (d’Orbigny, 1850), Hyphantoceras ( Hyphantoceras) cf. flexuosum (Schlüter, 1872), Eubostrychoceras ( Eubostrychoceras) cf. saxonicum (Schlüter, 1875), Scalarites? bohemicus (Fritsch, 1872), Sciponoceras bohemicum bohemicum (Fritsch, 1872), Scaphites geinitzii d’Orbigny, 1850, and Scaphites kieslingswaldensis Langenhan and Grundey, 1891. They provide an incomplete record that spans at maximum upper Middle Turonian to Lower Coniacian and at minimum Upper Turonian to Lower Coniacian. Associated inoceramid bivalves span an interval from upper Middle Turonian (based on the known first occurrence of Inoceramus inaequivalvis Schlüter, 1872) to the lower and middle Lower Coniacian, based on the known last occurrence of Cremnoceramus crassus inconstans (Woods, 1912), in the lower and middle parts of the Lower Coniacian.
Go to article

Authors and Affiliations

William James Kennedy
1
Ireneusz Walaszczyk
2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK and Department of EarthSciences, South Parks Road, Oxford OX1 3AN, UK
  2. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Successions exposed in the Agadir Basin (upper Albian to middle Turonian), in the Anti-Atlas (lower Turonian) in Morocco and in central Tunisia (Cenomanian–Turonian) yield abundant microcrinoids of the family Roveacrinidae, which are described and assigned to 32 species and formae, in ten genera. The following new taxa are described: Fenestracrinus gen. nov. with the type species F. oculifer sp. nov., Discocrinus africanus sp. nov., Styracocrinus rimafera sp. nov., Lebenharticrinus quinvigintensis sp. nov., L. zitti sp. nov., Euglyphocrinus cristagalli sp. nov., E. jacobsae sp. nov., E. truncatus sp. nov., E. worthensis sp. nov., Roveacrinus gladius sp. nov., R. solisoccasum sp. nov. and Drepanocrinus wardorum sp. nov. In addition, the new subfamily Plotocrininae is erected. The stratigraphical distribution of the taxa in two important localities, Taghazout in the Agadir Basin (Morocco) and Sif el Tella, Djebel Mhrila (central Tunisia), is provided. The faunas from the uppermost Albian and lowermost Cenomanian of the Agadir Basin are nearly identical to those recorded from central Texas, USA, some 5,300 km away, and permit a detailed correlation (microcrinoid biozones CeR1 and CeR2) to be established across the southern part of the Western Tethys, independently supported by new ammonite records. For the middle and upper Cenomanian, rather few detailed records of microcrinoids are available elsewhere, and the North African record forms the basis for a new zonation (CeR3–CeR6). The distribution of Turonian Roveacrinidae in North Africa is evidently very similar to that described in the Anglo-Paris Basin, and zones TuR1–3, TuR9, 10 and 14 are recognised for the first time in the Tethys.

Go to article

Authors and Affiliations

Andrew Scott Gale
Download PDF Download RIS Download Bibtex

Abstract

Over 130 species are documented from the Upper Albian, Cenomanian and Upper Turonian Fahdène Formation and correlatives in Central Tunisia and northern Algeria, based on material described by Henri Coquand (1852, 1854, 1862, 1880), Léon Pervinquière (1907, 1910), Georges Dubourdieu (1953), Jacques Sornay (1955), and new collections. The material consists predominantly of limonitic nuclei, together with adults of micromorphs. There is no continuous record, and a series of faunas are recognised that can be correlated with the zonation developed in Western Europe. These are the Upper Albian Ostlingoceras puzosianum fauna, Lower Cenomanian Neostlingoceras carcitanense and Mariella (Mariella) harchaensis faunas, the upper Lower to lower Middle Cenomanian Turrilites scheuchzerianus fauna, Middle Cenomanian Calycoceras (Newboldiceras) asiaticum fauna, Upper Cenomanian Eucalycoceras pentagonum fauna, and the Upper Turonian Subprionocyclus neptuni fauna. Two new micromorph genera are described, Coquandiceras of the Mantelliceratinae and Cryptoturrilites of the Turrilitinae. Most of the taxa present have a cosmopolitan distribution, with a minority of Boreal, North American and endemic taxa.

Go to article

Authors and Affiliations

William James Kennedy
Download PDF Download RIS Download Bibtex

Abstract

The Indian Mesozoic dinosaur record is famous for documenting significant aspects of dinosaur evolution during the Triassic, Jurassic and Cretaceous periods. The Cenomanian–Turonian Nimar Sandstone, Lower Narmada valley, has produced fragmentary skeletal remains of Sauropoda indet. The Maastrichtian Lameta Formation has yielded at least 6 valid sauropod taxa and indeterminate titanosaurid remains, and at least 11 named (but likely oversplit) theropod taxa, i.e., 3 smaller-bodied species and 8 medium-to-large sized theropods. Apart from skeletal remains, Infra- and Intertrappean beds of peninsular India have yielded more than 10,000 dinosaur eggs belonging to 5 oofamilies and 15 oospecies. Most of the Indian ootaxa show distinct affinities with the Late Cretaceous ootaxa of four other continental areas – Spain, France, Argentina and Morocco. The presence of the two dominant oofamilies, Fusioolithidae and Megaloolithidae, in the Infra- and Intertrappean localities of peninsular India and three different continents (South America, Europe and Africa) further shows an ancient Gondwanan affinity and basic terrestrial association among these three landmasses. Based on the phylogenetic analysis of skeletal material, the most plausible pathway of dinosaur dispersal between India and Madagascar took place during the Late Cretaceous. The other conceivable dispersal pathway for the small animals was between India and Asia by means of the Kohistan Dras Volcanic Arc or a northeast pathway through Somalia, while the very large vertebrates, like theropod dinosaurs, may have emerged as a component of a ‘Pan Gondwanan’ model.
Go to article

Authors and Affiliations

Ashu Khosla
1
Spencer G. Lucas
2

  1. Department of Geology, Panjab University, Sector-14, Chandigarh-160014, India
  2. New Mexico Museum of Natural History, 1801 Mountain Rd. NW, Albuquerque, NM 87104, USA
Download PDF Download RIS Download Bibtex

Abstract

Nothofagaceae fossil leaves and an associated palynoflora from Late Cretaceous sediments of Vega Island, eastern Antarctic Peninsula, are presented. The leaves are described as Nothofagus sp. 1 and Morphotype LDB 1, and come from the Snow Hill Island (late Campanian-early Maastrichtian) and the López de Bertodano (late Maastrichtian) formations, respectively. The palynoflora obtained from levels immediately above and below the Nothofagus sp. 1 and in the same horizon as the Morphotype LDB 1, included terrestrial and marine elements. In the palynoflora associated with Nothofagus sp. 1, conifers are dominant and pollen grains with Nothofagus affinity are represented by four species: Nothofagidites kaitangataensis (Te Punga) Romero 1973 and Nothofagidites senectus Dettmann and Playford 1968, which belong to the ancestral pollen type, as well as Nothofagidites dorotensis Romero 1973 and Nothofagidites sp. of the brassii-type. Cryptogamic spores, marine dinoflagellate cysts and algae, among others, are part of the assemblage. The palynoflora associated with the Morphotype LDB 1 also contains abundant conifer and angiosperm pollen grains with N. dorotensis as the only Nothofagus species recorded. Marine dinoflagellate cysts are scarce while fungi and phytodebris are common elements. The joint presence of marine and non-marine palynomorphs supports a probable nearshore environment at time of deposition for both units. Pollen and spore evidence suggests a mixed conifer and angiosperm forest, with Podocarpaceae and Nothofagus as the main components, and ferns, lycopods, and mosses in the understory. This forest developed under temperate and moist conditions during the middle Campanian-Maastrichtian.

Go to article

Authors and Affiliations

Edgardo Romero
Cecilia R. Amenábar
María C. Zamaloa
Andrea Concheyro
Download PDF Download RIS Download Bibtex

Abstract

This is a second paper dealing with juvenile and little known Mesozoic gastropods from Siberia and the Timan region. This part contains description of gastropods belonging to Neogastropoda and Heterobranchia. Described are 16 species, five of them are new. They are: Sulcoactaeon uralicus, S. timanicus, S. bojarkensis (Bullinidae), Vasjugania vasjuganensis (Acteonidae), and Biplica siberica (Ringiculidae). The new genus Vasjugania (Acteonidae) is proposed. Eight species are left in the open nomenclature. The protoconch of Siberian Khetella, illustrated here for the first time, suggests that this genus belongs to Purpurinidae and the whole family is a possible stem group for the Neogastropoda. Apart from Khetella the Siberian fauna seems to be of cosmopolitan character having common elements both with Europe and North America.

Go to article

Authors and Affiliations

Andrzej Kaim
Alexander L. Beisel
Download PDF Download RIS Download Bibtex

Abstract

The lower (but not lowermost) part of the Upper Cretaceous Anaipadi Formation of the Trichinopoly Group in the area between Kulatur, Saradamangalam and Anaipadi, in the south-western part of the Cauvery Basin in southeast India yielded rich inoceramid and ammonite faunas. The ammonites: Mesopuzosia gaudama (Forbes, 1846), Damesites sugata (Forbes, 1846), Onitschoceras sp., Kossmaticeras (Kossmaticeras) theobaldianum (Stoliczka, 1865), Lewesiceras jimboi (Kossmat, 1898), Placenticeras kaffrarium Etheridge, 1904, and Pseudoxybeloceras (Schlueterella) sp., are characteristic of the Kossmaticeras theobaldianum Zone. The absence of Peroniceras (P.) dravidicum (Kossmat, 1895) indicates the presence of only lower part of this zone, referred to the nominative Kossmaticeras theobaldianum Subzone at the localities studied. The inoceramids present are Tethyoceramus madagascariensis (Heinz, 1933) and Cremnoceramus deformis erectus (Meek, 1877), recorded for the first time from the region. The latter dates the studied interval as early early Coniacian, and allows, for the first time, direct chronostratigraphic dating of the Tethyoceramus madagascariensis Zone, and consequently also of the Kossmaticeras theobaldianum Subzone. As inoceramids occur in the middle part of the ammonite-rich interval, the Kossmaticeras theobaldianum Subzone may be as old as latest Turonian and not younger than early early Coniacian. The base of the Coniacian lies in the lower, but not lowermost part of the Anaipadi Formation. Both inoceramids and ammonites represent taxa known from Madagascar and South Africa.

Go to article

Authors and Affiliations

Ireneusz Walaszczyk
William James Kennedy
Amruta R. Paranjape
Download PDF Download RIS Download Bibtex

Abstract

The Upper Greensand Formation, mostly capped by the Chalk, crops out on the edges of a broad, dissected

plateau in Devon, west Dorset and south Somerset and has an almost continuous outcrop that runs from the Isle

of Purbeck to the Vale of Wardour in south Wiltshire. The Formation is well exposed in cliffs in east Devon and

the Isle of Purbeck, but is poorly exposed inland. It comprises sandstones and calcarenites with laterally and

stratigraphically variable amounts of carbonate cement, glauconite and chert. The sedimentology and palaeon-

tology indicate deposition in marginal marine-shelf environments that were at times subject to strong tidal and

wave-generated currents. The formation of the Upper Greensand successions in the region was influenced by

penecontemporaneous movements on major fault zones, some of which are sited over E-W trending Variscan

thrusts in the basement rocks and, locally, on minor faults. Comparison of the principal sedimentary breaks in

the succession with the sequence boundaries derived from world-wide sea-level curves suggests that local tec-

tonic events mask the effects of any eustatic changes in sea level. The preserved fauna is unevenly distributed,

both laterally and stratigraphically. Bivalves, gastropods and echinoids are common at some horizons but are

not age-diagnostic. Ammonites are common at a few stratigraphically narrowly defined horizons, but are rare

or absent throughout most of the succession. As a result, the age of parts of the succession is still poorly known

Go to article

Authors and Affiliations

Ramues Gallois
Hugh Owen
Download PDF Download RIS Download Bibtex

Abstract

In Butkov Quarry, ammonites of the families Holcodiscidae Spath, 1923 and Barremitidae Breskovski, 1977 occur in the pelagic Lower Cretaceous pelagic deposits of the Manín Unit. This contribution discusses the taxonomy of both families and presents their distribution in the layered sequences of the quarry. The genus Spitidiscus Kilian, 1910 classified as a member of the Superfamily Perisphinctoidea Steinmann in Steinmann and Döderlein, 1890 is an important representative of the Holcodiscidae from a stratigraphic point of view. In areas where the zonal index Acanthodiscus radiatus (Bruguière, 1789) does not occur, as in Butkov Quarry, the first representatives of Spitidiscus indicate the base of the Hauterivian. The genus Plesiospitidiscus Breistroffer, 1947 was long regarded as a member of the Superfamily Desmoceratoidea Zittel, 1895. This superfamily was based on its type species, Eodesmoceras celestini (Pictet and Campiche, 1860), which is not Valanginian in age, as now clearly proven. As a consequence, this superfamily is considered invalid. Vermeulen and Lahondère (2011) proposed an alternative by selecting a suitable initial genus, namely Plesiospitidiscus, for the Family Barremitidae, Superfamily Barremitoidea Breskovski, 1977 ( nom. transl. Vermeulen and Lahondère, 2011).
Go to article

Bibliography

Aguirre Urreta, M.B. and Rawson, P.F. 2003. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: the Hauterivian genus Holcoptychites. Cretaceous Research, 24, 589–613.
Arkell, W.J., Kummel, B. and Wright, C.W. 1957. Mesozoic Ammonoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, part L, Mollusca 4, Cephalopoda, Ammonoidea, 80–437. The Geological Society of America & The University of Kansas Press; New York & Lawrence.
Avram, E. 1995. Representantives of the family Holcodiscidae Spath, 1924 (Ammonitina) in Rumania. Memoire descrittive della Carta Geologica d’Italia, 51, 11–45.
Avram, E. and Grădinaru, E. 1993. A peculiar Upper Valanginian cephalopod fauna from the Carpathian Bend (Codlea Town Area), Romania): biostratigraphic and paleobistratigraphic implications. Jahrbuch der Geologischen Bundesanstalt, 136, 665–700.
Besaire, H. 1936. Recherches géologiques à Madagascar 1. La geologie du Nord-Ouest. Mémoires de l’Academie Malgache, 21, 1–259.
Borza, K., Michalík, J. and Vašíček, Z. 1987. Lithological, biofacial and geochemical characterization of the Lower Cretaceous pelagic carbonate sequence of Mt. Butkov (Manín Unit, Western Carpathians). Geologický Zborník Geologica Carpathica, 38, 323–348.
Breistroffer, M. 1947. Sur les zones d’ammonites de l’Albien de France et d’Angleterre. Travaux du Laboratoire de Géologie de la Faculté des Sciences de l’Université de Grenoble, 26, 17–104.
Breskovski, S. 1977. Sur la classification de la famille Desmoceratidae Zittel, 1895 (Ammonoidea, Crétacé). Comptes Rendu de l’Académie bulgare des Sciences, 30 (6), 891–894.
Bruguière, J.G. 1789. Histoire naturelle des Vers et des Mollusques. Encyclopédie méthodique, part 1, 344 pp. Panckoucke; Paris.
Bulot, L.G., Thieuloy, J.-P., Blanc, E. and Klein, J. 1993. Le cadre stratigraphique du Valanginien supérieur et de l’Hauterivien du Sud-Est de la France: Définition des biochronozones et caracterisation de nouveaux biohorizons. Géologie Alpine, 68 (1992), 13–56.
Busnardo, R., Charollais, J.-J., Weidmann, M. and Clavel, B. 2003. Le Crétacé inférieur de la Veveyse de Châtel (Ultrahelvétique des Préalpes externes; canton de Fribourg, Suisse). Revue de Paléobiologie, 22, 1–174.
Busnardo, R. and Thieuloy, J.-P. 1989. Les ammonites de l’Hauterivien Jurassien: révision des faunes de la region de l’étage Hauterivien. Mémoires de la Société Neuchâteloise des Sciences Naturelles, 11, 101–147.
Cecca, F., Faraoni, P. and Marini, A. 1998. Latest Hauterivian (Early Cretaceous) ammonites from Umbria-Marche Apennines (Central Italy). Palaeontographia Italica, 85, 61–110.
Cooper, M.R. 1981. Revision of the late Valanginian Cephalopoda from the Sundays River Formation of South Africa, with special reference to the genus Olcostephanus. Annals of the South African Museum, 83, 147–366.
Dimitrova, N. 1967. Les fossils de Bulgarie IV. Crétacé in férieur, Cephalpoda (Nautiloidea et Ammonoidea), 124 pp. B’lgarska Akademiya na Naukite; Sofia. [In Bulgarian]
Duraj, M., Filák, P. and Vašíček, Z. 1990. Ammoniten des Desmoceratentyps aus Ablagerungen der Hauterive-Barréme- Grenze von der Lokalität Lietavská Lúčka bei Žilina (Westkarpaten, Krížna-Decke). Knihovnička Zemního plynu a nafty, 9a, 55–68.
Fallot, P. and Termier, H. 1923. Ammonites nouvelles des Iles Baléares. Trabajos del Museo Nacional de Ciencias Naturales, Madrid, Serie Geológica, 32, 1–85.
Fischer, J.-C. and Gauthier, H. (Eds). 2006. Révision critique de la Paléontologie française d’Alcide d’Orbigny, incluant la réedition de l’original, vol. IV – Céphalopodes Crétacés, 35 pp. Backhuys Publishers; Leiden.
Főzy, I. and Janssen, N.N.M. 2006. The stratigraphic position of the ammonites bearing limestone bank of the Márvány-bánya quarry (Zirc, Bakony Mts, Hungary) and these of the Borzavár Limestone Formations. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2006 (1), 41–64.
Gorn, N.K. 1969. Almella almensis – new ammonite from the Barremian deposits of Crimea. Vestnik Leningradskogo Univerziteta, Geologiya – Geografiya, 12, 84–90. [In Russian]
Haug, E. 1889. Beitrag zur Kenntniss der oberneocomen Ammonitenfauna der Puezalpe bei Corvara (Südtirol). Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 7, 193–321.
Hoedemaeker, Ph.J. 1995. Ammonite desitribution around the Hauterivian–Barremian boundary along Río Argos (Caravaca, SE Spain). Géologie Alpine, Mémoire Hors Série, 20 (for 1994), 219–277.
Honnorat-Bastide, É.F. 1891. Sur une forme nouvelle ou peu connue de Céphalopodes du Crétacé inférieur des Basses Alpes (Ammonites Julianyi, nov. sp.). L’association scientifique de France, Compte Rendu de la 19me Session, Limoges 1890, second partie, Notes et Memoires, 387–389. Imprimerie Chaix; Paris.
Hyatt, A. 1900. Cephalopoda. In: Zittel, K.A. von, Textbook of Paleontology, 1st English edition, translated by C.R. Eastman, 502–592. Macmillan; London & New York.
Immel, H. 1987. Die Kreideammoniten der nördlichen Kalkalpen. Zitteliana, 15, 3–163.
Karakasch, N.I. 1907. Le Crétacé inférieur de la Crimée et sa faune. Trudy imperatorskago S.-Peterburskago obshchestva estestvoispytatelei, Otdelenie Geologii i Mineralogii, 32 (5), 1–482. [In Russian]
Kemper, E., Rawson, P.F. and Thieuloy, J.-P. 1981. Ammonites of Tethyan ancestry in the early Lower Cretaceous of northwest Europe. Palaeontology, 24, 251–311.
Kilian, W. 1910. Erste Abteilung: Unterkreide (Palaeocretacicum). Lieferung 2: Das bathyale Palaeocretacicum im südostlichen Frankreich; Valendis-Stufe; Hauterive-Stufe; Barreme-Stufe; Apt-Stufe. In: Frech, F. (Ed.), Lethaea Geognostica, II. Das Mesozoikum, Band 3 (Kreide), 169–288. Schweitzerbart; Stuttgart.
Kilian, W. and Reboul, P. 1915. Contribution à l’étude des faunes paléocrétacés du Sud-Est de la France. II. Sur quelques ammonites de l’Hauterivien de la Bégude (La Begüe) (Basses Alpes). Matériaux pour l’étude de la faune de l’Hauterivien des environs de Moustiers-Sainte-Marie, La Palud et Châteauneuf-les-Moustiers (Basses Alpes). Mémoires pour servir a l’éxplication de la carte géologique détaillée de la France, 225–296. Imprimerie Nationale; Paris.
Klein, J. 2005. Lower Cretaceous Ammonites I, Perisphinctaceae 1 – Himalayitidae, Olcostephanitidae, Holcodiscidae, Neocomitidae, Oosterellidae. Fossilium Catalogus, I: Animalia, pars 139, pp. 484. Backhuys Publishers; Leiden.
Klein, J. and Vašíček, Z. 2011. Lower Cretaceous Ammonites V, Desmoceratoidea. Fossilium Catalogus, I: Animalia, pars 148, 311 pp. Backhuys Publishers, Margraf Publishers; The Netherlands.
Mandov, G.K. 1976. L’étage Hauterivien dans les Balkanides occidentales (Bulgarie de l’ouest) et sa faune d’ammonites. Annuaire de l’Université de Sofia, Livre 1, Géologie, 67, 11–99.
Michalík, J. and Vašíček, Z. 1987. Geology and stratigraphy of the Lower Cretaceous limestone deposists (Manín Unit, Middle Váh Valley, Western Slovakia). Mineralia Slovaca, 19, 115–134. [In Slovakian]
Michalík, J., Vašíček, Z. (Eds), Boorová, D., Golej, M., Halásová, E., Hort, P., Ledvák, P., Lintnerová, O., Reháková, D., Schlögl, J., Skupien, P., Smrečková, M., Soták, J., Šimo, V., Šimonová, V. and Zahradníková, B.B. 2013. The Butkov Hill – a stone archive of Slovakian mountains and the Mesozoic sea life history, 164 pp. Veda; Bratislava.
Mutterlose, J., Rawson, P., Reboulet, S., Baudin, F., Bulot, L., Emmanuel, L., Gardin, S., Martinez, M. and Renard, M. 2020. The Global Boundary Stratotype and Point (GSSP) for the base of the Hauterivian Stage (Lower Cretaceous), La Charce, southeast France. Episodes, doi: 10.18814/epiiugs/2020/020072.
Nagy, I. 1968. Unterkretazische Cephalopoden aus dem Gerecse-Gebirge II. Annales historico-naturales Musei Nationalis Hungarici, 60, 41–59.
Nikolov, T.G. and Breskovski, S. 1969. Abrytusites – nouveau genre d’ammonites Barrémiennes. Bulletin of the Geological Institute (série Palaeontology), 18, 91–96.
Orbigny, A. d’. 1840–1842. Paléontologie française. Description zoologique et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrain Crétacés, vol. 1, Céphalopodes, 121–430 (1841). Masson; Paris.
Paquier, V.L. 1900. Recherches géologiques dans le Diois et les Baronnies orientales. Bulletin de la Société de Statistique des Sciences Naturelles et des Arts Industriels de Departement de l’Isere, Grenoble (series 4), 5, 77–476. (Appendice paléontologique I–VII).
Pictet, F.J. and Campiche, G. 1860. Description des fossiles du terrain Crétacé des environs de Sainte Croix, part 1. Matériaux pour la Paleontologie Suisse (series 2), 209– 380. J. Kessmann & H. Georg; Genève.
Rawson, P.F. and Aguirre-Urreta, M.B. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: The Hauterivian genus Spitidiscus. Cretaceous Research, 33, 97–105.
Reboulet, S. 1996. L’évolution des ammonites du Valanginien– Hauterivien inférieur du bassin vocontien et de la plateforme provençale (Sud-Est de la France): relations avec la stratigraphie séquentielle et implications biostratigraphiques. Documents des Laboratoires de Géologie Lyon, 137 (for 1995), 1–371.
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Frau, C., Kakabadze, M.V., Klein, J., Moreno- Bedmar, J.A., Lukender, A., Pictet, A., Ploch, I., Raisossadat, S.N., Vašíček, Z., Baraboshkin, E.J. and Mitta, V.V. 2018. Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017). Cretaceous Research, 91, 100–110.
Rodighiero, A. 1919. Il sistena Cretaceo del Veneto occidentale compreso fra l’Adige e il Piave, con speciale riguardo al Neocomiano dei Sette Comuni. Palaentographia Italica, Memoire di Paleontologia, 25, 39–125. Salfeld, H. 1921.
Kiel- und Furchenbildung auf der Schalenaussenseite der Ammonoideen in ihrer Bedeutung für die Systematik und Festlegung von Biozonen. Zentralblatt für Mineralogie, Geologie und Paläontologie, 1921, 343–347.
Sarasin, Ch. and Schöndelmayer, Ch. 1901. Étude monographique des ammonites du Crétacique inférieur de Chatel-Saint- Denis. Mémoires de la Société Paléontologique Suisse, 28, 1–91.
Sowerby, J. de C. 1827. The Mineral Conchology of Great Britain, part 98. In: Sowerby, J. and Sowerby, J. de C. (1812– 1846), The Mineral Conchology of Great Britain, vol. 6, 133–140. Meredith; London.
Spath, L.F. 1922. On the Senonian ammonite fauna of Pondoland. Transactions of the Royal Society of South Africa, 10, 113–148. Spath, L.F. 1923. A Monograph of the Ammonoidea of the Gault. Part 1, 72 pp. Palaeontographical Society; London.
Spath, L.F. 1930. On the Cephalopoda of the Uitenhage Beds. Annals of the South African Museum, 28, 131–157. Steinmann, G. 1890. Cephalopoda. In: Steinmann, G. and Döderlein, L. (Eds), Elemente der Paläontolologie, 848 pp. Wilhelm Engelmann; Leipzig.
Thieuloy, J.-P. 1972. Biostratigraphie des lentilles a peregrinelles (brachiopodes) de l’Hauterivien de Rottier (Drome, France). Géobios, 5 (1), 5–53.
Thomel, G. 1980. Ammonites, 227 pp. Serre; Nice. Tzankov, V. and Breskovski, S. 1985. Ammonites des familles Holcodiscidae Spath, 1924 et Astieridiscidae Tzankov et Breskovski, 1982, II. Description paléontologique. Geologica Balcanica, 15 (5), 3–51.
Vašíček, Z. 2002. Lower Cretaceous Ammonoidea in the Podbranč quarry (Pieniny Klippen Belt, Slovakia). Bulletin of the Czech Geological Survey, 77 (3), 187–200.
Vašíček, Z. 2006. A remarkable assemblage of Early Barremian ammonites in the Central Western Carpathians (Butkov Quarry, Slovakia). Acta Geologica Polonica, 56, 421–440.
Vašíček, Z. 2010. Early Cretaceous ammonites from the Butkov Quarry (Manín Unit, Central Western Carpathians, Slovakia). Acta Geologica Polonica, 60 (3), 393–415.
Vašíček, Z. 2020a. Tescheniceras gen. nov. (Ammonoidea) and the definition of the Valanginian/Hauterivian boundary in Butkov Quarry (Central Western Carpathians, Slovakia). Acta Geologica Polonica, 70, 569–584.
Vašíček, Z. 2020b. Early Cretaceous ammonites of the superfamily Bochianitoidea from the Butkov Quarry (Central Western Carpathains, Slovakia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 298 (1), 78–85.
Vašíček, Z. and Michalík, J. 1986. The Lower Cretaceous ammonites of the Manín Unit (Mt. Butkov, West Carpathians). Geologický Zborník Geologica Carpathica, 37 (4), 449–481.
Vašíček, Z. and Michalík, J. 1999. Early Cretaceous ammonoid paleobiogeography of the West Carpathian part of the Paleoeuropean shelf margin. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 212 (1–3), 241–262.
Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, palaeogeography and life in the Western Carpathians. Beringeria, 10, 3–169.
Vašíček, Z., Rabrenović, D., Radulović, V.J., Radulović, B.V. and Mojsić, I. 2013. Ammonoids (Desmoceratoidea and Silesitoidea) from the Late Barremian of Boljetin, eastern Serbia. Cretaceous Research, 41, 39–54.
Vermeulen, J. 2005. Sur quatre espèces particulières d’ammonites du Barrémien du sud-est de la France. Annales du Muséum d’Histoire Naturelle de Nice, 20, 1–24.
Vermeulen, J. 2007a. Boundaries, ammonite fauna and main subdivisions of the stratotype of the Barremian. Géologie Alpine, 2005 (Corrected reprint), série spéciale “Colloques et excursions”, 7, 147–173.
Vermeulen, J. 2007b. Nouvelles données sur l’évolution et la classification des Holcodiscidae Spath, 1923 (Ammonitida, Ammonitina, Silesitoidea). Annales du Muséum d’Histoire Naturelle de Nice, 22, 87–100.
Vermeulen, J., Clement, A. and Autran, G. 1999. Un nouveau repère biostratigraphique dans l’Hauterivien supérieur du Sud-Est de la France: l’horizon à Subsaynella begudensis. Riviéra Scientifique, 1999 (1), 71–78.
Vermeulen, J. and Lahondère, J.-C. 2011. Sur quelques espèces d’ammonites du Barremien utra-tellien de la région de Constantine, Algérie. II. Holcodiscidae et Astieridiscidae (Ammonitina). Annales du Muséum d’Histoire Naturelle de Nice, 26, 17–46.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2014. Ammonites du Barrémien du Sud-Est de la France (Ammonitina, Ancyloceratina, Turrilitina). Strata, série 2, mémoires, 50, 1–95.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2017. Sur quelques Holcodiscidae (Ammonitina, Barremitoidea) du Barrémien du Sud-Est de la France. Riviéra Scientifique, 101, 65–80.
Vermeulen, J. and Thieuloy, J.-P. 1999. Conceptions nouvelles de l’évolution et de la classification de la famille Holcodiscidae Spath, 1923 (Ammonoidea, Desmocerataceae). Comptes Rendus Académie des Sciences Paris, Sciences de la terre et des planètes, 329, 363–367.
Weber, E. 1942. Beitrag zur Kentniss der Rossfeldschichten und ihrer Fauna. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Band, B 86, 247–281.
Winkler, G.G. 1868. Versteinerungen aus dem bayerischen Alpengebiet mit geognostischen Erläuterungen. I. Die Neocomformation der Urschlauerachenthales bei Traunstein mit Rücksicht auf ihre Grenzschichten, 48 pp. Verlag der J. Lindauer’schen Buchhandlung; München.
Wippich, M.G.E. 2001. Die tiefe Unter-Kreide (Berrias bis Unter- Hauterive) im südwestmarokkanischen Becken: Ammonitenfauna, Bio- und Sequenzstratigraphie, 142 pp. Unpublished Thesis, Universität Bochum.
Wright, C.W. 1955. Notes on Cretaceous ammonites – II. The phylogeny of the Desmocerataceae and the Hoplitidae. The Annals and Magazine of Natural History (twelfth series), 92, 561–575.
Wright, C.W., Callomon, J.H. and Howarth, M.K. 1996. Cretaceous Ammonoidea. Treatise on Invertebrate Paleontology, part L, Mollusca 4 Revised, 362 pp. The Geological Society of America & The University of Kansas Boulder; Colorado & Lawrence, Kansas.
Wright, C.W. and Kennedy, W.J. 1984. The Ammonoidea of the Lower Chalk, Part 1. Monograph of the Palaeontographical Society, 137 (1983), 1–126.
Zittel, K.A. von 1895. Grundzüge der Paläontologie, 971 pp. Oldenburg; München, Leipzig.
Go to article

Authors and Affiliations

Zdeněk Vašíček
1
Jaap Klein
2

  1. Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, CZ-708 00 Ostrava-Poruba, Czech Republic
  2. Demmerik 12, NL-3645 EC Vinkeveen, The Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The Upper Cretaceous succession (Coniacian to lowermost Maastrichtian, with focus on the Campanian) at Petrich, Central Srednogorie Zone in Bulgaria, is described and calibrated stratigraphically based on nannofossils, dinoflagellate cysts and inoceramids. The following standard nannofossil zones and subzones are identified: UC10–UC11ab (middle to upper Coniacian), UC11c–UC12–UC13 (uppermost Coniacian to Santonian), UC14a (lowermost Campanian), UC14b TP–UC15c TP (lower Campanian to ‘middle’ Campanian), UC15d TP– UC15e TP (upper Campanian), UC16a TP (of Thibault et al. 2016; upper part of the upper Campanian), and UC16b (Campanian–Maastrichtian boundary). The base of the Campanian is defined by the FO of Broinsonia parca parca (Stradner) Bukry, 1969 and Calculites obscurus (Deflandre) Prins and Sissingh in Sissingh, 1977 (a morphotype with a wide central longitudinal suture). The Areoligera coronata dinoflagellate cyst Zone (upper lower Campanian to upper upper Campanian) is identified, corresponding to the UC14b TP–UC16a TP nannofossil subzones. The inoceramid assemblage indicates the ‘Inoceramus’ azerbaydjanensis ‘Inoceramus’ vorhelmensis Zone, correlated within the interval of nannofossil subzones UC15d TP–UC15e TP. The composition of the dinoflagellate cyst assemblages and palynofacies pattern suggest normal marine, oxic conditions and low nutrient availability within a distal shelf to open marine depositional environment during the Campanian.
Go to article

Authors and Affiliations

Polina Pavlishina
1
Doche Dochev
1
Michael Wagreich
2
Veronika Koukal
2

  1. Department of Geology, Paleontology and Fossil Fuels, Faculty of Geology and Geography, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
  2. Department of Geology, University of Vienna, A-1090 Vienna, Austria
Download PDF Download RIS Download Bibtex

Abstract

Several closely-spaced phosphorite beds stand out at the Albian–Cenomanian transition in the mid-Cretaceous transgressive succession at the northeastern margin of the Holy Cross Mountains, central Poland. They form a distinctive condensed interval of considerable stratigraphical, palaeontological, and economic value. Here, we correlate the classical section at Annopol with a recently investigated section at Chałupki. We propose a new stratigraphic interpretation of the phosphorite interval, based on lithological correlations, Rare Earth Elements and Yttrium (REE+Y) signatures of phosphorites, age-diagnostic macrofossils, and sequence stratigraphic patterns. This interval has long been considered as exclusively Albian in age. However, new macrofossil data allow us to assign the higher phosphorite levels at Annopol and Chałupki, which were the primary target for the phosphate mining, to the lower Cenomanian. In terms of sequence stratigraphy, the phosphorite interval encompasses the depositional sequence DS Al 8 and the Lowstand System Tract of the successive DS Al/Ce 1 sequence. The proposed correlation suggests that lowstand reworking during the Albian–Cenomanian boundary interval played an important role in concentrating the phosphatic clasts and nodules to exploitable stratiform accumulations. Our conclusions are pertinent to regional studies, assessments of natural resources (in view of the recent interest in REE content of the phosphorites), and dating of the fossil assemblages preserved in the phosphorite interval. On a broader scale, they add to our understanding of the formation of stratiform phosphorite deposits.
Go to article

Authors and Affiliations

Marcin Machalski
1
Danuta Olszewska-Nejbert
2
Markus Wilmsen
3

  1. Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL 00-818 Warszawa, Poland
  2. University of Warsaw, Faculty of Geology, ul. Żwirki i Wigury 93, PL 02-089 Warszawa, Poland
  3. Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Paläozoologie, Konigsbrücker Landstr. 159, D-01109 Dresden, Germany
Download PDF Download RIS Download Bibtex

Abstract

The lithostratigraphy, biostratigraphy, sequence stratigraphy, ammonite and inoceramid faunas of the Upper Albian, Cenomanian, and Lower Turonian Karai Formation, the highest unit of the Uttatur Group in the Pondicherry Sub-Basin of the Cauvery Basin in Tamil Nadu, south India, are documented. Detailed logs and descriptions of sections between Karai and Kulakkalnattam, Odiyam and Kunnam, and north-west of Garudamangalam are presented. They provide the evidence for an ammonite zonal scheme that can be correlated in detail with sequences developed in Europe, with successive Upper Albian zones of Pervinquieria (Subschloenbachia) rostrata and P. (S.) perinflata (the latter on slight evidence), Cenomanian zones of Mantelliceras mantelli, Cunningtoniceras cunningtoni, Calycoceras (Newboldiceras) asiaticum, Pseudo calycoceras harpax, Euomphaloceras septemseriatum and Pseudspidoceras footeanum. The Lower Turonian is represented by a Neoptychites cephalotus–Mytiloides borkari fauna. Over 120 ammonite species are described, of which Puzosia (Bhimaites) falx, Protacanthoceras parva, Watinoceras elegans, Euomphaloceras varicostatum, Kamerunoceras multinodosum, and Carthaginites multituberculatus are new. The new genus Kunnamiceras, with Ammonites tropicus Kossmat, 1865 as type species, is interpreted as a paedomorphic dwarf derivative of Pseudocalycoceras harpax (Stoliczka, 1864). Ammonite faunas from shales are dominated by feebly-ornamented taxa: leiostraca; those from sandstones by strongly ornamented taxa: trachyostraca, differences interpreted as reflecting the preferred habits of adults in life. 15 species of inoceramid bivalves, including a newly described species Inoceramus chiplonkari, are recognised, with a mixed East African–Euramerican–North Pacific affinity. On the basis of the stratigraphic framework developed, a sequence stratigraphic interpretation of the Karai Formation is proposed, and correlated with those recognised in Europe, Morocco, and the United States Gulf Coast and Western Interior.

Go to article

Authors and Affiliations

Andrew S. Gale
William J. Kennedy
Ireneusz Walaszczyk
Download PDF Download RIS Download Bibtex

Abstract

We document an upper upper Albian ( Mortoniceras rostratum Zone) cephalopod assemblage from Clansayes (Drôme, south-eastern France). Although fossils are rare in local exposures and in the single sampled level, a decade of intensive fossil collecting yielded 290 ammonite and 5 nautilid specimens. In total, we describe 1 species of nautilid and 24 species (within 17 genera) of ammonites, including 13 heteromorphs. Only two of these ammonite taxa were previously recorded from the upper upper Albian at Clansayes, which demonstrates the value of this fauna with regard to taxonomy, palaeobiology and palaeobiogeography. Based on morphological and biometric analyses performed on an extensive material (104 specimens), we discriminate two species for the heteromorphic ammonite genus Mariella Nowak, 1916 within the Mortoniceras rostratum Zone. In addition, we investigate shell chirality patterns in Mariella from the late Albian of southern France. Upon comparison of the Clansayes material with older material from the immediately underlying upper Albian Mortoniceras fallax Zone at the neighbouring Salazac locality, we identify an increase in the proportion of sinistral specimens. This observed increase in the frequency of sinistral Mariella specimens may hypothetically be part of a global evolutionary pattern, considering that nearly all documented younger Cenomanian Mariella (and more generally Cenomanian turrilitids) are sinistral.
Go to article

Authors and Affiliations

Romain Jattiot
1
Jens Lehmann
1
Benjamin Latutrie
2
Amane Tajika
3 4
Emmanuelle Vennin
5
Pauline Vuarin
6
Arnaud Brayard
5
Emmanuel Fara
5
Vincent Trincal
7

  1. Fachbereich 5 Geowissenschaften, Universität Bremen, Klagenfurter Strasse 4, 28357, Bremen, Germany
  2. La Grange, 9003 En Cros, route de Garrigues, 81500, Lavaur, France
  3. Division of Paleontology (Invertebrates), American Museum of Natural History, Central Park West 79th Street, New York, NY, 10024, USA
  4. University Museum, University of Tokyo, Hongo 7‐3‐1, Bunkyo‐ku, Tokyo, 113‐0033, Japan
  5. UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000 Dijon, France
  6. Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622 Villeurbanne, France
  7. LMDC, INSAT/UPS Génie Civil, 135 Avenue de Rangueil, 31077 Toulouse cedex 04, France
Download PDF Download RIS Download Bibtex

Abstract

Marine mudstone of Coniacian age (c. 89.51–86.49 Ma) was deposited on a storm-dominated ramp spanning the foredeep of the Cretaceous Western Canada Foreland Basin. Marine flooding surfaces define 18 allomembers that thin over 300 km, from c. 140 m in the proximal foredeep to c. 20 m close to the forebulge crest. The broadly conformable succession of allomembers is partitioned into five ‘tectono-stratigraphic units’ by low-angle unconformities that bevel off c. 10 to 20 m of strata over ‘arches’ that have a length scale of c. 50–100 km and are bounded by relatively linear zones of flexure. Depositional history involved two alternate modes: ‘Background’ deposition of subtly-tapered allomembers took place on a planar sea floor, subject to regional flexural subsidence, with sea-level modulated by Milankovitch-scale (c. 125 kyr) eustatic cycles. ‘Flexural’ events deformed the strata into troughs and arches across narrow zones of flexure. Arch crests were bevelled off, probably by submarine wave erosion. Eroded sediment did not accumulate in troughs but was advected beyond the study area by storm-driven processes. Cycles of deposition, warping and erosion were repeated five times on an average timescale of 600 kyr. Arches and troughs do not coincide with Precambrian basement structures, and their origin remains enigmatic. Changes in in-plane stress may have effected the localized vertical motion.
Go to article

Authors and Affiliations

Elizabeth A. Hooper
1 2
A. Guy Plint
1

  1. Department of Earth Sciences, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
  2. Present address: WSP E&I Canada Limited, 3450 Harvester Road, Suite 100, Burlington, Ontario, L7N3W5, Canada
Download PDF Download RIS Download Bibtex

Abstract

The lower Upper Albian ammonite genus Dipoloceras Hyatt, 1900 (subfamily Mojsisovicsiinae Hyatt, 1903) is represented in KwaZulu-Natal by the type species, D. cristatum (Brongniart, 1822), marker species for the base of the Upper Albian Substage. Rhytidoceras van Hoepen, 1931 (of which Drepanoceras van Hoepen, 1931, non Stein 1878 and Ricnoceras van Hoepen, 1941, are synonyms), previously regarded as subgenera of Dipoloceras, are afforded generic status as are its supposed synonyms Diplasioceras van Hoepen, 1946a, and Euspectroceras van Hoepen, 1946a. The type species of these genera are revised, and assigned to the subfamily Pervinquierinae Spath, 1926.
Go to article

Authors and Affiliations

William James Kennedy
1
Herbert Christian Klinger
2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK
  2. Natural History Collections Department, Iziko South African Museum, P.O. Box 61, Cape Town, 8000 South Africa
Download PDF Download RIS Download Bibtex

Abstract

Butkov Quarry provides the best exposed stratigraphic sequence of marly limestones with Early Cretaceous ammonites in the Manín Nappe of the Central Western Carpathians. The presented paper deals with the sporadically occurring zonal ammonites, or ammonites of guiding character, from the Lower Valanginian to Upper Hauterivian. Sixteen species are taxonomically elaborated here in detail. More attention is given to the basic taxonomy of the Subfamily Crioceratitinae Gill, 1871. The species described here, like most of the previously published species from Butkov Quarry, are representatives of the Mediterranean bioprovince and are close to the ammonite association from the Vocontian Basin.
Go to article

Authors and Affiliations

Zdeněk Vašíček
1

  1. Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, CZ-70800 Ostrava-Poruba, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The cosmopolitan Late Albian ammonite subgenus Pervinquieria ( Deiradoceras) van Hoepen, 1931, and its synonyms Cechenoceras van Hoepen, 1941 and Mimeloceras van Hoepen, 1944, originally based on material from northern KwaZulu-Natal, are reviewed. The type material of the type species, Subschloenbachia prerostrata Spath, 1921, is revised and reillustrated, as are its numerous synonyms.
Go to article

Authors and Affiliations

William James Kennedy
1
Herbert Christian Klinger
2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK
  2. Natural History Collections Department, Iziko South African Museum, P.O. Box 61, Cape Town, 8000 South Africa
Download PDF Download RIS Download Bibtex

Abstract

In this contribution we complete the revision of species we refer to Pervinquieria ( Deiradoceras) van Hoepen, 1931, focusing on those assigned by him to his genera Cechenoceras and Mimeloceras.
Go to article

Authors and Affiliations

William James Kennedy
1
Herbert Christian Klinger
2

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK and Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, UK
  2. Natural History Collections Department, Iziko South African Museum, P.O. Box 61, Cape Town, 8000 South Africa
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of seismostratigraphic interpretation of the Upper Cretaceous sedimentary succession preserved within two synclines flanking the Szamotuły diapir in northwestern Poland. This succession is characterized by a complex Santonian–Campanian internal geometry characteristic of contourites – that is, deposits formed by contour (bottom) currents. The aim of the present paper is to document these contourites using 2D seismic reflection profiles calibrated by the Obrzycko 1 well. The contourite drifts in the immediate vicinity of the Szamotuły structure exhibit elongated mounded shapes, with adjacent concave moats. At greater distances from the diapir, gradual aggradational patterns are observed. The formation of these Santonian– Campanian contourites was associated with growth of the Szamotuły diapir during regional compression and Polish Basin inversion. These contour currents and associated contourites formed an integral part of a regional axial depositional system developed within the flanks of the Mid-Polish Anticlinorium. Furthermore, this paper discusses the potential role of contourites as palaeomorphological indicators of palaeoslopes in varied geodynamics settings, such as inverting sedimentary basins, as opposed to the passive margins upon which they have been most commonly documented.
Go to article

Authors and Affiliations

Aleksandra Stachowska
1
Piotr Krzywiec
1

  1. Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland

This page uses 'cookies'. Learn more