Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Polycyclic aromatic hydrocarbons (PAHs) belong to the group of recalcitrants that on reaching wastewater can irreversibly inhibit some sensitive biological processes in activated sludge such as nitrification. This situation leads to wastewater treatment failure due to the influence of these substances on bacteria responsible for important biochemical processes. Observation of the changes in bacterial diversity using molecular tools, such as denaturing gradient gel electrophoresis (DGGE), could be the first step in finding a way of preventing wastewater treatment failure. The aim of this experiment was to monitor bacterial biodiversity in a membrane bioreactor (MBR) dealing with synthetic wastewater contaminated with high concentration of petroleum organic compounds (POCs) and to study the influence of POCs contamination on bacterial changeability in activated sludge. COD removal in investigated membrane bioreactors was at a level of 93%. The organics removal efficiency was not affected by the maximal tested dose of petroleum contamination ( l OOO μl POCs/l of wastewater) and the MBRs wastewater treatment performance was undisturbed. DGGE analysis revealed that the biodiversity fluctuated slightly in control MBR, while in experimental MBR the biodiversity index decreased drastically after adding the highest experimental concentration of POCs. These results suggest that concentrations of POCs at levels from 50 μl/l to 500 μl/l stimulate biodiversity growth, while the concentration I OOO μI POCs/1 of wastewater seems to inhibit the most sensitive processes in wastewater treatment by influencing the bacterial biocenosis.
Go to article

Authors and Affiliations

Aleksandra Ziembińska
Sławomir Ciesielski
Jarosław Wiszniowski
Download PDF Download RIS Download Bibtex

Abstract

Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC) did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.

Go to article

Authors and Affiliations

Aleksandra Ziembińska-Buczyńska
Ewa Felis
Justyna Folkert
Anna Meresta
Dominika Stawicka
Anna Gnida
Joanna Surmacz-Górska
Download PDF Download RIS Download Bibtex

Abstract

Nitritation, the first stage of ammonia removal process is known to be limiting for total process performance. Ammonia oxidizing bacteria (AOB) which perform this process are obligatory activated sludge habitants, a mixture consisting of Bacteria, Protozoa and Metazoa used for biological wastewater treatment. Due to this fact they are an interesting bacterial group, from both the technological and ecological point of view. AOB changeability and biodiversity analyses both in wastewater treatment plants and lab-scale reactors are performed on the basis of 16S rRNA gene sequences using PCR-DGGE (Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis) as a molecular biology tool. AOB researches are usually led with nested PCR. Because the application of nested PCR is laborious and time consuming, we have attempted to check the possibility of using only first PCR round to obtain DGGE fingerprinting of microbial communities. In this work we are comparing the nested and non-nested PCR-DGGE monitoring of an AOB community and presenting advantages and disadvantages of both methods used. The experiment revealed that PCR technique is a very sensitive tool for the amplification of even a minute amount of DNA sample. But in the case of nested-PCR, the sensitivity is higher and the template amount could be even smaller. The nested PCR-DGGE seems to be a better tool for AOB community monitoring and complexity research in activated sludge, despite shorter fragments of DNA amplification which seems to be a disadvantage in the case of bacteria identification. It is recommended that the sort of analysis approach should be chosen according to the aim of the study: nested-PCR-DGGE for community complexity analysis, while PCR-DGGE for identification of the dominant bacteria.
Go to article

Authors and Affiliations

Aleksandra Ziembińska-Buczyńska
Jarosław Wiszniowski
Sławomir Ciesielski
Download PDF Download RIS Download Bibtex

Abstract

Perinatal calf mortality in dairy herds has been reported worldwide. The etiology of stillbirth is multifactorial, and can be caused by various species of bacteria and environmental factors. Among them some potential pathogens from the Mollicutes class such as Mycoplasma (M.) spp. and Ureaplasma (U.) diversum can be isolated from the bovine genital tract and other organs of the suspected cattle. The aim of this study was to evaluate if the bacteria belonging to the Molli- cutes class i.e. M. bovis, M. bovigenitalium, M. canadense, M. canis, M. arginini, M. bovirhinis, M. dispar, M. alkalescens and U. diversum could have an impact on perinatal calf mortality in selected Polish dairy farms. The material was: 121 stillborn calves (SB), 21 live born calves (C) and 131 cows (dams) from 30 Polish Holstein-Friesian herds. Samples were examined from all the SB calves’ and six control euthanized calves’ abomasal contents and lung samples collected during necropsy, and from the dams’ serum and placenta. In dams the serological ELISA, and in calves and placenta samples molecular PCR/denaturing gradient gel electrophoresis, methods were used. Screening of dams’ sera for antibodies to M. bovis (ELISA) showed seven dams positive for M. bovis, whereas none of the nine examined Mollicutes microorganisms were detected in the placenta and calves.

Go to article

Authors and Affiliations

E. Szacawa
P. Jawor
K. Dudek
D. Bednarek
T. Stefaniak
Download PDF Download RIS Download Bibtex

Abstract

Ammonia-oxidizing bacteria communities were evaluated in a completely mixed, laboratory scale membrane reactor (MBR) working under anoxic conditions for 5 months. The microorganisms in activated sludge were fed a synthetic medium containing 66-150 mg NH4 +-N/l. The age of the activated sludge in MBR was 50 days and the hydraulic retention time (HRT) was 3.3 days. The estimation of the diversity and complexity of the AOB community together with the identification of the dominant bacteria in the activated sludge under anoxic conditions were performed using denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. Molecular analysis of the microbial community carried out with two microbial molecular markers, 16S rRNA gene and amoA gene, suggested that nitrification was led by a Nitrosomonas-like species. In the biocenosis of the investigated bioreactor, oxygen was the crucial selective parameter. The results obtained in this work showed that amoA gene research is more suitable to study the stability and effectiveness of ammonia oxidation. This information emphasizes the necessity of the usage of molecular markers based on functional genes instead of ribosomal ones in order to present the actual state of the process performed in bioreactors. It was also stated that Nitrosomonas -like bacteria are able to perform nitritation even in anoxic environment, that is probably the reason why these bacteria are the most common AOB in different bioreactors.

Go to article

Authors and Affiliations

Aleksandra Ziembińska
Sławomir Ciesielski
Anna Raszka
Korneliusz Miksch

This page uses 'cookies'. Learn more