Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents some aspects of a development project related to Industry 4.0 that was executed at Nemak, a leading manufacturer of the aluminium castings for the automotive industry, in its high pressure die casting foundry in Poland. The developed data analytics system aims at predicting the casting quality basing on the production data. The objective is to use these data for optimizing process parameters to raise the products’ quality as well as to improve the productivity. Characterization of the production data including the recorded process parameters and the role of mechanical properties of the castings as the process outputs is presented. The system incorporates advanced data analytics and computation tools based on the analysis of variance (ANOVA) and applying an MS Excel platform. It enables the foundry engineers and operators finding the most efficient process variables to ensure high mechanical properties of the aluminium engine block castings. The main features of the system are explained and illustrated by appropriate graphs. Chances and threats connected with applications of the data-driven modelling in die casting are discussed.

Go to article

Authors and Affiliations

M. Perzyk
B. Dybowski
J. Kozłowski
Download PDF Download RIS Download Bibtex

Abstract

The application of churn prevention represents an important step for mobile communication

companies aiming at increasing customer loyalty. In a machine learning perspective,

Customer Value Management departments require automated methods and processes to

create marketing campaigns able to identify the most appropriate churn prevention approach.

Moving towards a big data-driven environment, a deeper understanding of data

provided by churn processes and client operations is needed. In this context, a procedure

aiming at reducing the number of churners by planning a customized marketing campaign

is deployed through a data-driven approach. Decision Tree methodology is applied to drow

up a list of clients with churn propensity: in this way, customer analysis is detailed, as well

as the development of a marketing campaign, integrating the individual churn model with

viral churn perspective. The first step of the proposed procedure requires the evaluation of

churn probability for each customer, based on the influence of his social links. Then, the

customer profiling is performed considering (a) individual variables, (b) variables describing

customer-company interactions, (c) external variables. The main contribution of this work

is the development of a versatile procedure for viral churn prevention, applying Decision

Tree techniques in the telecommunication sector, and integrating a direct campaign from

the Customer Value Management marketing department to each customer with significant

churn risk. A case study of a mobile communication company is also presented to explain

the proposed procedure, as well as to analyze its real performance and results.

Go to article

Authors and Affiliations

Laura Lucantoni
Sara Antomarioni
Maurizio Bevilacqua
Filippo Emanuele Ciarapica
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper was to develop a methodology for diagnosing the causes of die-casting defects based on advanced modelling, to correctly diagnose and identify process parameters that have a significant impact on product defect generation, optimize the process parameters and rise the products’ quality, thereby improving the manufacturing process efficiency. The industrial data used for modelling came from foundry being a leading manufacturer of the high-pressure die-casting production process of aluminum cylinder blocks for the world's leading automotive brands. The paper presents some aspects related to data analytics in the era of Industry 4.0. and Smart Factory concepts. The methodology includes computation tools for advanced data analysis and modelling, such as ANOVA (analysis of variance), ANN (artificial neural networks) both applied on the Statistica platform, then gradient and evolutionary optimization methods applied in MS Excel program’s Solver add-in. The main features of the presented methodology are explained and presented in tables and illustrated with appropriate graphs. All opportunities and risks of implementing data-driven modelling systems in high-pressure die-casting processes have been considered.
Go to article

Bibliography

[1] Paturi, R.U.M., Cheruki S. (2020). Application, and performance of machine learning techniques in manufacturing sector from the past two decades: A review. Materials Today: Proceedings. 38(5), 2392-2401. DOI: https://doi.org/10.1016/j.matpr.2020.07.209
[2] Campbell, J. (2003). Castings, the new metallurgy of cast materials, second edition. Elsevier Science Ltd., ISBN: 9780750647908, 307-312.
[3] Kochański, A.W. & Perzyk, M. (2002). Identification of causes of porosity defects in steel castings with the use of artificial neural networks. Archives of Foundry. 2(5), 87-92. ISSN 1642-5308.
[4] Falęcki, Z. (1997). Analysis of casting defects. Kraków: AGH Publishers.
[5] Kim, J., Kim, J., Lee, J. (2020). Die-Casting defect prediction and diagnosis system using process condition data. Procedia Manufacturing. 51, 359-364. DOI: 10.1016/j.promfg.2020.10.051.
[6] Lewis, M. (2018). Seeing through the Cloud of Industry 4.0. In 73rd WFC, 23-27, (pp. 519-520). Krakow, Poland: Polish Foundrymen’s Association.
[7] Perzyk, M., Dybowski, B. & Kozłowski, J. (2019). Introducing advanced data analytics in perspective of industry 4.0. in die casting foundry. Archives of Foundry Engineering. 19(1), 53-57.
[8] Perzyk, M., Kozłowski, J. & Wisłocki, M., (2013). Advanced methods of foundry processes control. Archives of Metallurgy and Materials. 58(3), 899-902. DOI: 10.2478/amm-2013-0096
[9] Makhlouf, M.M., Apelian, D. & Wang, L. (1998). Microstructures and properties of aluminum die casting alloys. North American Die Casting. https://doi.org/10.2172/751030
[10] Tariq, S., Tariq, A., Masud, M. & Rehman, Z. (2021). Minimizing the casting defects in high pressure die casting using taguchi analysis. Scientia Iranica. DOI: 10.24200/sci.2021.56545.4779.
[11] Fracchia, E., Lombardo, S., & Rosso, M. (2018). Case study of a functionally graded aluminum part. Applied Sciences. 8(7), 1113.
[12] Dargusch, M.S., Dour, G., Schauer, N., Dinnis, C.M. & Savage, G. (2006). The influence of pressure during solidification of high pressure die cast aluminium telecommunications components. Journal of Materials Processing Technology. 180(1-3), 37-43.
[13] Bonollo, F., Gramegna, N., Timelli, G. High pressure die-casting: contradictions and challenges. JOM: the journal of the Minerals, Metals & Materials Society. 67(5), 901-908. DOI: 10.1007/s11837-015-1333-8.
[14] Adamane, A.R., Arnberg, L., Fiorese, E., Timelli, G., Bonollo, F. (2015). Influence of injection parameters on the porosity and tensile properties of high-pressure die cast Al-Si alloys: A Review. International Journal of Meterials. 9(1), 43-53.
[15] Gramegna, N. & Bonollo, F. (2016). HPDC foundry competitiveness based on smart Control and Cognitive system in Al-alloy products. La Metallurgia Italiana. 6, 21-24.
[16] Łuszczak, M. & Dańko, R. (2013). State the issues in the casting of large structural castings in aluminium alloys. Archives of Foundry Engineering. 13(3), 113-116. ISSN (1897-3310).
[17] Davis, J.R. (1990). ASM handbook. ASM, Metals Park, OH. 123-151, 166-16.
[18] Perzyk, M., Biernacki, R. & Kozłowski, J. (2008). Data mining in manufacturing: significance analysis of process parameters. Journal of Engineering Manufacture. 222(11), 1503-1516. DOI: 10.1243/09544054JEM1182.
[19] Koronacki, J., Mielniczuk J. Statistics for students of technical and natural sciences. WNT (209-210, 458). (in Polish).
[20] Okuniewska, A., Methods review of advanced data analysis tools, in process control and diagnostics. Piech K. (red.) Issues Actually Addressed by Young Scientists, 17, 2020, Krakow, Poland, Creativetime, 328 p., ISBN 978-83-63058-97-5
[21] Lawrence, S., Giles, C.L., Tsoi, A.C. (1996). What size neural network gives optimal generalization? Convergence Properties of Backpropagation. Technical Report UMIACS-TR-96-22 and CS-TR-3617. Institute for Advanced Computer Studies, University of Maryland. College Park, MD 20742.
[22] Tadeusiewicz, R. (2005). First electronic brain model.
[23] https://natemat.pl/blogi/ryszardtadeusiewicz/129195,pierwszy-dzialajacy-techniczny-model-mozgu

Go to article

Authors and Affiliations

A. Okuniewska
1
M.A. Perzyk
1
J. Kozłowski
1

  1. Institute of Manufacturing Technologies, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Lean thinking and Industry 4.0 have been broadly investigated in recent years in intelligent manufacturing. Lean Production is still one of the most efficient industrial solutions in business and research, despite being implemented for a long time. On the other hand, Industry 4.0 has been introduced referring to the fourth industrial revolution. This study aims to analyze the combination of both Industry 4.0 and Lean production practices through a systematic literature review from a Lean Automation perspective. In this field, 189 articles are examined using VOSviewer for cluster analysis. Then, a more detailed analysis is provided to explore how Industry 4.0 and Lean techniques are integrated from a practical perspective. Results highlighted Big Data Analysis and Value Stream Mapping as the most common techniques, also emphasizing a growing trend toward new publications. Nevertheless, few practical applications are identified in the literature highlighting six gaps in the correlation of LA practices.
Go to article

Authors and Affiliations

Laura Lucantoni
1
Sara Antomarioni
1
Filippo Emanuele Ciarapica
1
Maurizio Bevilacqua
1

  1. Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica Delle Marche, Italy

This page uses 'cookies'. Learn more