Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Deposition defects like porosity, crack and lack of fusion in additive manufacturing process is a major obstacle to commercialization of the process. Thus, metallurgical microscopy analysis has been mainly conducted to optimize process conditions by detecting and investigating the defects. However, these defect detection methods indicate a deviation from the operator’s experience. In this study, artificial intelligence based YOLOv3 of object detection algorithm was applied to avoid the human dependency. The algorithm aims to automatically find and label the defects. To enable the aim, 80 training images and 20 verification images were prepared, and they were amplified into 640 training images and 160 verification images using augmentation algorithm of rotation, movement and scale down, randomly. To evaluate the performance of the algorithm, total loss was derived as the sum of localization loss, confidence loss, and classification loss. In the training process, the total loss was 8.672 for the initial 100 sample images. However, the total loss was reduced to 5.841 after training with additional 800 images. For the verification of the proposed method, new defect images were input and then the mean Average Precision (mAP) in terms of precision and recall was 0.3795. Therefore, the detection performance with high accuracy can be applied to industry for avoiding human errors.
Go to article

Bibliography

[1] O .H. Kwon, H.G. Kim, M.J. Ham, W.R. Kim, G.H. Kim, J.H. Cho, N.I. Kim, K.I. Kim, J. Intel. Manuf. 31, 375-386 (2020).
[2] L. Scime, J. Beuth, Addit. Manuf. 24, 273-286 (2018).
[3] L. Scime, J. Beuth, Addit. Manuf. 19, 114-126 (2018).
[4] L. Scime, J. Beuth, Addit. Manuf. 25, 151-165 (2019).
[5] L. Scime, J. Beuth, Addit. Manuf. 29, 100830, 1-9 (2019).
[6] M. Khanzadeh, W. Tian, A. Yadollahi, H.R. Doude, M.A. Tschopp, Addit. Manuf. 23, 443-456 (2018).
[7] M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M.A. Tschopp, L. Bian, J. Manuf. Syst. 47, 69-82 (2018).
[8] M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, L. Bian, IISE Trans. 51, 5, 437-455 (2019)
[9] J . Redmon, A. Farhadi, arXiv preprint, 1804.02767 (2018).
[10] https://imageai.readthedocs.io/en/latest/
[11] https://github.com/tzutalin/labelImg
[12] http://www.image-net.org/
[13] https://imgaug.readthedocs.io/en/latest/index.html
[14] J .S. Kim, B.J. Kang, S.W. Lee, J. Mech. Sci. Technol. 33, 12, 1-7 (2019).
[15] A. Torralba, A.A. Efros, Proc. CVPR IEEE 12218709, 1521-1528 (2011).
Go to article

Authors and Affiliations

Byungjoo Choi
1
ORCID: ORCID
Yongjun Choi
1
ORCID: ORCID
Moon Gu Lee
1
ORCID: ORCID
Jung Sub Kim
2
ORCID: ORCID
Sang Won Lee
2
ORCID: ORCID
Yongho Jeon
1
ORCID: ORCID

  1. Ajou University, Department of Mechanical Engineering, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi 16499, Republic of Korea
  2. Sungkyunkwan University School of Mechanical Engineering, Suwon, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study on applying machine learning algorithms for the classification of a two-phase flow regime and its internal structures. This research results may be used in adjusting optimal control of air pressure and liquid flow rate to pipeline and process vessels. To achieve this goal the model of an artificial neural network was built and trained using measurement data acquired from a 3D electrical capacitance tomography (ECT) measurement system. Because the set of measurement data collected to build the AI model was insufficient, a novel approach dedicated to data augmentation had to be developed. The main goal of the research was to examine the high adaptability of the artificial neural network (ANN) model in the case of emergency state and measurement system errors. Another goal was to test if it could resist unforeseen problems and correctly predict the flow type or detect these failures. It may help to avoid any pernicious damage and finally to compare its accuracy to the fuzzy classifier based on reconstructed tomography images – authors’ previous work.
Go to article

Authors and Affiliations

Radosław Wajman
1
ORCID: ORCID
Jacek Nowakowski
1
ORCID: ORCID
Michał Łukiański
1
Robert Banasiak
1
ORCID: ORCID

  1. Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18, 90-537 Łódź, Poland

This page uses 'cookies'. Learn more