Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We propose a new integrated demultiplexer model using the two-dimensional photonic crystal (2D PC) through the hexagonal resonant cavity (HRC) for the International Telecommunication Union (ITU) standard. The integrated model of demultiplexer for both 25 GHz and 50 GHz has been designed for the first time. The demultiplexer consists of bus input waveguide, drop waveguide, Hexagonal Resonant Cavity (HRC), 6 Air Hole Filter (6-AHF), 7 Air Hole Filter (7-AHF). The 7-AHF is used to filter 25GHz wavelength, and the 6-AHF filter is used to filter 50 GHz wavelength. The Q-factor on the designed demultiplexer is flexible based on the idea of increasing the number of air holes between drop waveguide and resonant cavity. The demultiplexer is designed to drop maximum 8 resonant wavelengths. One side of demultiplexer is able to drop 50 GHz ITU standard wavelengths, which are of 1556.3 nm, 1556.7 nm, 1557.1 nm and 1557.5 nm, and further the other facet is able to drop 25 GHz wavelengths, which are of 1551.4 nm, 1551.6 nm, 1551.8 nm, and 1552.0 nm. The proposed demultiplexer may be carried out within the integrated dual system. This system is able to lessen the architecture cost and the size is miniaturized substantially.

Go to article

Authors and Affiliations

V.R. Balaji
M. Murugan
S. Robinson
R. Nakkeeran
Download PDF Download RIS Download Bibtex

Abstract

This work suggests a brand-new 1*4 two-dimensional demultiplexer design based on multicore photonic crystal fiber. Numerical models show that the optical signals can be separated in a photonic crystal fiber construction using optical signals with wavelengths of 0.85, 1.1, 1.19, and 1.35 μm injected on the center core and separated into four cores. The innovative design switches different air-hole positions using pure silica layers throughout the length of the fiber to regulate the direction of light transmission between layers.
Wavelength demultiplexers are essential parts of optical systemic communications. They serve as a data distributor and can use a single input to produce multiple outputs. The background material is frequently natural silica, and air holes can be found anywhere throughout the length of the fiber as the low-index components.
The simulation results showed that after a 6 mm light propagation, the four-channel demux can start to demultiplex.
Go to article

Authors and Affiliations

Assia Ahlem Harrat
1
Mohammed Debbal
1
Mohammed Chamse Eddine Ouadah
2

  1. Department of Electronics and Telecommunications, Faculty of Science and Technology, University of Belhadj Bouchaib, Algeria
  2. Department of Telecommunications, Faculty of Electrical and Computer Engineering, University of Mouloud Mammeri, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Recent years, the design of photonic crystal (PC) based optical devices is receiving keen interest in research and scientific community. In this paper, two dimensional (2D) PC based eight channel demultiplexer is proposed and designed and the functional characteristics of demultiplexer namely resonant wavelength, transmission efficiency, quality factor, spectral width, channel spacing and crosstalk are investigated. The demultiplexer is designed to drop the wavelength centred at 1537.6 nm, 1538.5 nm, 1539.4 nm, 1540.4 nm, 1541.2 nm, 1541.9 nm, 1542.6 nm and 1543.1 nm. The proposed demultiplexer is primarily composed of bus waveguide, drop waveguide and quasi square ring resonator. The quasi square ring resonator and square ring micro cavity (inner rods) are playing a vital role for a desired channel selection. The operating range of the devices is identified through a photonic band gap (PBG) which is obtained using a plane wave expansion (PWE) method. The functional characteristics of the proposed demultiplexer are attained using a 2D finite difference time domain (FDTD) method. The proposed device offers low crosstalk and high transmission efficiency with ultra-compact size, hence, it is highly desirable for DWDM applications.

Go to article

Authors and Affiliations

V. Kannaiyan
R. Savarimuthu
S.K. Dhamodharan
Download PDF Download RIS Download Bibtex

Abstract

The design and performance analysis of a 1310/1550-nm wavelength division demultiplexer with tapered geometry based on InP/InGaAsP multimode interference (MMI) coupler has been carried out. Wavelength response of demultiplexer of conventional MMI and tapered input and tapered output (tapered I/O) waveguides geometry of the MMI have been discussed. The demultiplexing function has been first performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI structure have been achieved. Access width of tapered I/O waveguides have been adjusted to give a low insertion loss (IL) and high extinction ratio (ER) for the considered wavelengths of 1310 nm and 1550 nm. The total size of the demultiplexer has been significantly reduced over the existing MMI devices. Numerical simulations with finite difference beam propagation method are applied to design and optimize the operation of the proposed demultiplexer.

Go to article

Authors and Affiliations

D. Chack
V. Kumar
S.K. Raghuwanshi

This page uses 'cookies'. Learn more