Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Chemical bonded resin sand mould system has high dimensional accuracy, surface finish and sand mould properties compared to green

sand mould system. The mould cavity prepared under chemical bonded sand mould system must produce sufficient permeability and

hardness to withstand sand drop while pouring molten metal through ladle. The demand for improved values of permeability and mould

hardness depends on systematic study and analysis of influencing variables namely grain fineness number, setting time, percent of resin

and hardener. Try-error experiment methods and analysis were considered impractical in actual foundry practice due to the associated cost.

Experimental matrices of central composite design allow conducting minimum experiments that provide complete insight of the process.

Statistical significance of influencing variables and their interaction were determined to control the process. Analysis of variance

(ANOVA) test was conducted to validate the model statistically. Mathematical equation was derived separately for mould hardness and

permeability, which are expressed as a non-linear function of input variables based on the collected experimental input-output data. The

developed model prediction accuracy for practical usefulness was tested with 10 random experimental conditions. The decision variables

for higher mould hardness and permeability were determined using desirability function approach. The prediction results were found to be

consistent with experimental values.

Go to article

Authors and Affiliations

M.G.C. Patel
M.B. Parappagoudar
G.R. Chate
A.S. Deshpande
Download PDF Download RIS Download Bibtex

Abstract

The dry sliding wear behavior of heat-treated super duplex stainless steel AISI 2507 was examined by taking pin-on-disc type of wear-test

rig. Independent parameters, namely applied load, sliding distance, and sliding speed, influence mainly the wear rate of super duplex

stainless steel. The said material was heat treated to a temperature of 850°C for 1 hour followed by water quenching. The heat treatment

was carried out to precipitate the secondary sigma phase formation. Experiments were conducted to study the influence of independent

parameters set at three factor levels using the L27 orthogonal array of the Taguchi experimental design on the wear rate. Statistical

significance of both individual and combined factor effects was determined for specific wear rate. Surface plots were drawn to explain the

behavior of independent variables on the measured wear rate. Statistically, the models were validated using the analysis of variance test.

Multiple non-linear regression equations were derived for wear rate expressed as non-linear functions of independent variables. Further,

the prediction accuracy of the developed regression equation was tested with the actual experiments. The independent parameters

responsible for the desired minimum wear rate were determined by using the desirability function approach. The worn-out surface

characteristics obtained for the minimum wear rate was examined using the scanning electron microscope. The desired smooth surface was

obtained for the determined optimal condition by desirability function approach.

Go to article

Authors and Affiliations

M. Davanageri
S. Narendranath
R. Kadoli

This page uses 'cookies'. Learn more