Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A new ultrasound digital transcranial Doppler system (digiTDS) is introduced. The digiTDS enables diagnosis of intracranial vessels which are rather difficult to penetrate for standard systems. The device can display a color map of flow velocities (in time-depth domain) and a spectrogram of a Doppler signal obtained at particular depth. The system offers a multigate processing which allows to display a number of spectrograms simultaneously and to reconstruct a flow velocity profile.

The digital signal processing in digiTDS is partitioned between hardware and software parts. The hardware part (based on FPGA) executes a signal demodulation and reduces data stream. The software part (PC) performs the Doppler processing and display tasks. The hardware-software partitioning allowed to build a flexible Doppler platform at a relatively low cost.

The digiTDS design fulfills all necessary medical standards being a new useful tool in the transcranial field as well as in heart velocimetry research.

Go to article

Authors and Affiliations

Marcin Lewandowski
Mateusz Walczak
Piotr Karwat
Beata Witek
Paweł Karłowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the estimation of flow velocity from a multi-sensor scenario. Different estimation methods were used, which allow the effective measurement of the actual Doppler shift in a noisy environment, such as water with air bubbles, and on this basis the estimation of the flow velocity in the pipe was calculated. Information fusion is proposed for the estimates collected. The proposed approach focuses on the density of the fluid. The proposed method is capable of determining the flow velocity with high accuracy and small variations. Simulation results for plastic and steel (both galvanized and non-galvanized) pipes show the possibility of accurate fluid flow measurements without the need for sensors inside the pipe.
Go to article

Authors and Affiliations

Pawel Biernacki
1
Stanislaw Gmyrek
1
Wladyslaw Magiera
1

  1. Faculty of Electronics, Photonics and Microsystems, Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The possibilities to improve values of the satellite orbit elements by employing the pseudo-ranges and differences of carrier phase frequencies measured at many reference GPS stations are analysed. An improvement of orbit ephemeris is achieved by solving an equation system of corrections of the pseudo-ranges and phase differences with the least-squares method. Also, equations of space coordinates of satellite orbit points expressed by ephemeris at fixed moments are used. The relation between the accuracy of the pseudo-ranges and phase differences and the accuracy of the satellite ephemeris is analysed. Formulae for estimation of the influence of the ephemeris on the measured pseudo-ranges and phase differences and for prediction of the accuracy of the pseudo-ranges and phase differences were obtained. An influence of the covariance between single orbit parameters on the accuracy of the pseudo-ranges and phase differences is detected.

Go to article

Authors and Affiliations

Jonas Skeivalas
Eimuntas Paršeliūnas
Raimundas Putrimas
Dominykas Šlikas
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an innovative ultrasound imaging method called Doppler Tomography (DT), otherwise known as Continuous Wave Ultrasonic Tomography (CWUT). Thanks to this method, it is possible to image the tissue cross-section in vivo using a simple two-transducer ultrasonic probe and using the Doppler effect. It should be noted that DT significantly differs from the conventional ultrasound Doppler method of measuring blood flow velocity. The main difference is that when measuring blood flow, we receive information with an image of the velocity distribution in a given blood vessel (Nowicki, 1995), while DT allows us to obtain a cross-sectional image of stationary tissue structure. In the conventional method, the probe remains stationary, while in the DT method, the probe moves and the examined tissue remains stationary.

This paper presents a method of image reconstruction using the DT method. First, the basic principle of correlation of generated Doppler frequencies with the location of inclusions from which they originate is explained. Then the exact process and algorithm in this method are presented. Finally, the impact of several key parameters on imaging quality is examined. As a result, the conclusions of the research allow to improve the image reconstruction process using the DT method.

Go to article

Authors and Affiliations

Tomasz Świetlik
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

Kidney Cooling Jacket (KCJ) preserves the kidney graft, wrapped in the jacket, against the too fast time of temperature rise during the operation of connecting a cooled transplant to the patient’s bloodstream. The efficiency of KCJ depends on the stationarity of the fluid flow and its spatial uniformity. In this paper, the fluid velocity field inside the three different KCJ prototypes has been measured using the 20 MHz ultrasonic Doppler flowmeter. The simplified 2D geometrical model of the prototypes has been presented using COMSOL Multiphysics to simulate the fluid flow assuming the laminar flow model. By comparing the numerical results with experimental data, the simplified 2D model is shown to be accurate enough to predict the flow distribution of the internal fluid velocity field within the KCJ. The discrepancy between the average velocity measured using the 20 MHz Doppler and numerical results was mainly related to the sensitivity of the velocity measurements to a change of the direction of the local fluid flow stream. Flux direction and average velocity were additionally confirmed by using commercial colour Doppler imaging scanner. The current approach showed nearly 90% agreement of the experimental results and numerical simulations. It was important for justifying the use of numerical modelling in designing the baffles distribution (internal walls in the flow space) for obtaining the most spatially uniform field of flow velocity.
Go to article

Authors and Affiliations

Barbara Gambin
1
ORCID: ORCID
Ilona Korczak-Cegielska
2
Wojciech Secomski
1
Eleonora Kruglenko
1
Andrzej Nowicki
1

  1. Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  2. Doctoral Studies of Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Acoustical Driving Forces (ADF), induced by propagating waves in a homogeneous and inhomogeneous lossy fluid (suspension), are determined and compared depending on the concentration of suspended particles. Using integral equations of the scattering theory, the single particle (inclusion) ADF was calculated as the integral of the flux of the momentum density tensor components over the heterogeneity surface. The possibility of negative ADF was indicated. Originally derived, the total ADF acting on inclusions only, stochastically distributed in ambient fluid, was determined as a function of its concentration. The formula for the relative increase in ADF, resulting from increased concentration was derived. Numerical ADF calculations are presented. In experiments the streaming velocities in a blood-mimicking starch suspension (2 μm radius) in water and Bracco BR14 contrast agent (SF6 gas capsules, 1 μm radius) were measured as the function of different inclusions concentration. The source of the streaming and ADF was a plane 2 mm diameter 20 MHz ultrasonic transducer. Velocity was estimated from the averaged Doppler spectrum obtained from originally developed pulsed Doppler flowmeter. Numerical calculations of the theoretically derived formula showed very good agreement with the experimental results.

Go to article

Authors and Affiliations

Janusz Wójcik
Wojciech Secomski
Download PDF Download RIS Download Bibtex

Abstract

A sound knowledge of horseshoe impact on blood flow parameters is required for making shoeing decisions and selecting the most appropriate types of shoes. The aim of this study was to determine the effect of horse shoeing with egg bar shoes and shoes with wedge pads on blood flow parameters in the lateral palmar digital artery measured by Doppler ultrasound. The study was conducted on 16 horses divided into two groups. Horses from group 1 were shod with egg bar shoes. Horses from group 2 were shod with shoes with wedge pads. Doppler ultrasound parameters of the lateral palmar digital artery at the level of the metacarpophalangeal joint were evaluated. Doppler tests were performed before and after shoeing within a monthly interval. The results of the study indicate that egg bar shoes have a greater impact on blood circulation in the distal part of the equine limb than shoes with wedge pads. However, the only parameters to have changed substantially after shoeing with egg bar shoes were end-diastolic velocity (EDV) and mean velocity (Vmn) in the lateral palmar digital artery. A low-resistance blood flow pattern was noted before shoeing. After shoeing in group 1, it remained unchanged in 5 horses, whereas a high-resistance pattern was observed in 3 animals. A low-resistance blood flow pattern was noted in all group 2 horses after shoeing. The difference between the analyzed shoeing techniques could be attributed to increased pressure in the heel bulb area in horses shod with egg bar shoes. Wedge pads shift the load away from the heel bulbs, which might reduce the pressure on the palmar digital vessels and exert a smaller influence on the parameters measured in the Doppler ultrasound test.
Go to article

Authors and Affiliations

M. Mieszkowska
1
P. Holak
1
Y. Zhalniarovich
1
M. Mieszkowski
2
K. Domagalska-Stomska
3

  1. Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, Olsztyn, 10-719, Poland
  2. Department of Anesthesiology and Intensive Care, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Al. Warszawska 30, 10-082, Olsztyn, Poland
  3. Student of 5th year, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, Olsztyn, 10-719, Poland
Download PDF Download RIS Download Bibtex

Abstract

The underground complicated testing environment and the fan operation instability cause large random errors and outliers of the wind speed signals. The outliers and large random errors result in distortion of mine wind speed monitoring, which possesses safety hazards in mine ventilation system. Application of Kalman filter in velocity monitoring can improve the accuracy of velocity measurement and eliminate the outliers. Adaptive Kalman Filter was built by automatically adjusting process noise covariance and measurement noise covariance depending on the differences between measured and expected speed signals. We analyzed the fluctuation of airflow flow using data of wind speed flow and distribution characteristics of the tunnel obtained by the Laser Doppler Velocimetry system (LDV) studies. A state-space model was built based on the tunnel airflow fluctuations and wind speed signal distribution. The adaptive Kalman Filter was calculated according to the actual measurement data and the Expectation Maximization (EM) algorithm. The adaptive Kalman filter was used to shield fluid pulsation while preserving system-induced fluctuations. Using the Kalman filter to treat offline wind speed signal acquired by LDV, the reliability of Kalman filter wind speed state model and the characteristics of adaptive Kalman Filter were investigated. Results showed that the adaptive Kalman filter effectively eliminated the outliers and reduced the root-mean-squares error (RMSE), and the adaptive Kalman filter had better performance than the traditional Kalman filter in eliminating outliers and reducing RMSE. Field experiments in online wind speed monitoring were conducted using the optimized adaptive Kalman Filter. Results showed that adaptive Kalman filter treatment could monitor the wind speed with smaller RMSE compared with LVD monitor. The study data demonstrated that the adaptive Kalman filter is reliable and suitable for online signal processing of mine wind speed monitor.

Go to article

Authors and Affiliations

De Huang
Jian Liu
Lijun Deng
Xuebing Li
Ying Song
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose using a propeller modulation on the transmitted signal (called sonar micro- Doppler) and different support vector machine (SVM) kernels for automatic recognition of moving sonar targets. In general, the main challenge for researchers and craftsmen working in the field of sonar target recognition is the lack of access to a valid and comprehensive database. Therefore, using a comprehensive mathematical model to simulate the signal received from the target can respond to this challenge. The mathematical model used in this paper simulates the return signal of moving sonar targets well. The resulting signals have unique properties and are known as frequency signatures. However, to reduce the complexity of the model, the 128- point fast Fourier transform (FFT) is used. The selected SVM classification is the most popular machine learning algorithm with three main kernel functions: RBF kernel, linear kernel, and polynomial kernel tested. The accuracy of correctly recognizing targets for different signal-to-noise ratios (SNR) and different viewing angles was assessed. Accuracy detection of targets for different SNRs (−20, −15, −10, −5, 0, 5, 10, 15, 20) and different viewing angles (10, 20, 30, 40, 50, 60, 70, 80) is evaluated. For a more fair comparison, multilayer perceptron neural network with two back-propagation (MLP-BP) training methods and gray wolf optimization (MLP-GWO) algorithm were used. But unfortunately, considering the number of classes, its performance was not satisfactory. The results showed that the RBF kernel is more capable for high SNRs (SNR = 20, viewing angle = 10) with an accuracy of 98.528%.
Go to article

Authors and Affiliations

Abbas Saffari
1
ORCID: ORCID
Seyed Hamid Zahiri
1
ORCID: ORCID
Navid Khozein Ghanad
2
ORCID: ORCID

  1. University of Birjand, Birjand, Iran
  2. Sajjad University of Mashhad, Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the methods to detect the channel delay profile and the Doppler spectrum of shallow underwater acoustic channels (SUAC). In our channel sounding methods, a short impulse in form of a sinusoid function is successively sent out from the transmitter to estimated the channel impulse response (CIR). A bandpass filter is applied to eliminate the interference from out-of-band (OOB). A threshould is utilized to obtain the maximum time delay of the CIR. Multipath components of the SUAC are specified by correlating the received signals with the transmitted sounding pulse with its shifted phases from 0 to 2π. We show the measured channel parameters, which have been carried out in some lakes in Hanoi. The measured results illustrate that the channel is frequency selective for a narrow band transmission. The Doppler spectrum can be obtained by taking the Fourier transform of the time correlation of the measured channel transfer function. We have shown that, the theoretical maximum Doppler frequency fits well to that one obtained from measurement results.

Go to article

Authors and Affiliations

Van Duc Nguyen
Tien Hoa Nguyen
Hoa Xuan Thi Ho
Download PDF Download RIS Download Bibtex

Abstract

Objectives: In the article we describe the new, high frequency, 20 MHz scanning/Doppler probe designed to measure the flow mediated dilation (FMD) and shear rate (SR) close to the radial artery wall.

Methods: We compare two US scanning systems, standard vascular modality working below 12 MHz and high frequency 20 MHz system designed for FMD and SR measurements. Axial resolutions of both systems were compared by imaging of two closely spaced food plastic foils immersed in water and by measuring systolic/diastolic diameter changes in the radial artery. The sensitivities of Doppler modalities were also determined. The diagnostic potential of a high frequency system in measurements of FMD and SR was studied in vivo, in two groups of subjects, 12 healthy volunteers and 14 patients with stable coronary artery disease (CAD).

Results: Over three times better axial resolution was demonstrated for a high frequency system. Also, the sensitivity of the external single transducer 20 MHz pulse Doppler proved to be over 20 dB better (in terms of a signal-to-noise ratio) than the pulse Doppler incorporated into the linear array. Statistically significant differences in FMD and FMD/SR values for healthy volunteers and CAD patients were confirmed, p-values < 0:05. The areas under Receiver Operating Characteristic (ROC) curves for FMD and FMD/SR for the prediction CAD had the values of 0.99 and 0.97, respectively.

Conclusions: These results justify the usefulness of the designed high-frequency scanning system to determine the FMD and SR in the radial artery as predictors of coronary arterial disease.

Go to article

Authors and Affiliations

Andrzej Nowicki
Barbara Gambin
ORCID: ORCID
Wojciech Secomski
Zbigniew Trawiński
Michał Szubielski
Ryszard Tymkiewicz
Robert Olszewski
Download PDF Download RIS Download Bibtex

Abstract

In detecting cluster targets in ports or near-shore waters, the echo amplitude is seriously disturbed by interface reverberation, which leads to the distortion of the traditional target intensity characteristics, and the appearance of multiple targets in the same or adjacent beam leads to fuzzy feature recognition. Studying and extracting spatial distribution scale and motion features that reflect the information on cluster targets physics can improve the representation accuracy of cluster target characteristics. Based on the highlight model of target acoustic scattering, the target azimuth tendency is accurately estimated by the splitting beam method to fit the spatial geometric scale formed by multiple highlights. The instantaneous frequencies of highlights are extracted from the time-frequency domain, the Doppler shift of the highlights is calculated, and the motion state of the highlights is estimated. Based on the above processing method, target highlights’ orientation, spatial scale and motion characteristics are fused, and the multiple moving highlights of typical formation distribution in the same beam are accurately identified. The features are applied to processing acoustic scattering data of multiple moving unmanned underwater vehicles (UUVs) on a lake. The results show that multiple small moving underwater targets can be effectively recognized according to the highlight scattering characteristics.
Go to article

Authors and Affiliations

Yang Yang
1
ORCID: ORCID
Jun Fan
1
Bin Wang
1
ORCID: ORCID

  1. Key Laboratory of Marine Intelligent Equipment and System of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China

This page uses 'cookies'. Learn more