Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Industrial steelmaking (EAF) flue dust was characterized in terms of chemical and phase compositions, leaching behaviour in 20% sulphuric acid solution as well as leaching thermal effect. Waste product contained about 43% Zn, 27% Fe, 19% O, about 3% Pb and Mn and lesser amounts of other elements (Ca, Si, Mo, etc.). It consisted mainly of oxide-type compounds of iron and zinc. Dissolution of metals (Zn, Fe, Mn) from the dust was determined in a dependence of solid to liquid ratio (50-200 g/L), temperature (20-80oC) and leaching time (up to 120 min). The best result of 60% zinc recovery was obtained for 50 g dust/L and a temperature of 80oC. Leaching of the material was an exothermic process with a reaction heat of about –318 kJ/kg. Precipitation purification of the solution was realized using various ratios of H2O2 to NH3aq. A product of this stage was hydrated iron(III) oxide. Final solution was used for zinc electrowinning. Despite that pure zinc was obtained the highest cathodic current efficiency was only 40%.

Go to article

Authors and Affiliations

E. Rudnik
Download PDF Download RIS Download Bibtex

Abstract

In this study, laboratory-scale experiments were carried out to investigate the effects of microwave-assisted alkaline leaching on the treatment of electric arc furnace dusts to recover zinc and lead. Microwave treatment is a new innovative technology in waste treatment and now is an attractive advanced inter-disciplinary field and also environmental friendly. The highest zinc extraction, 50.3% in 60 minutes using 5 M NaOH at 750 W and L:S ratio 20, and lead extraction up to 92.84% was achieved in these same conditions but in 30 minutes. Compared with conventional leaching, the top extraction rate using MW-assisted leaching was higher by 16% (Zn) and 26% (Pb). Zinc presents in the flue dust in the form of franklinite (ZnFe2O4), its leaching in sodium hydroxide does not occur under the examined conditions, because it is enclosed in a matrix of iron.

Go to article

Authors and Affiliations

M. Laubertova
T. Havlik
L. Parilak
B. Derin
J. Trpcevska

This page uses 'cookies'. Learn more