Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, energetic behaviors of polyvinylidene fluoride (PVDF)-coated zirconium (Zr) powders were investigated using thermogravimetric analyzer-differential scanning calorimetry (TGA-DSC). PVDF-coated Zr powder had 1.5 times higher heat flow than ZrO2-passivated Zr powder. PVDF-coated Zr powder had a Zr-F compound formed on its surface by its strong chemical bond. This compound acted as an oxidation-protecting layer, providing an efficient combustion path to inner pure Zr particle while thermal oxidation was progressing at the same time. PVDF coating layers also made thermal reaction start at a lower temperature than ZrO2-passivated Zr powder. It was obtained that the surface PVDF coating layer evaporated at approximately 673 K, but the surface oxide layer fully reacted at approximately 923 K by DSC analysis. Hence, Zr powders showed enhanced energetic properties by the PVDF-coated process.
Go to article

Bibliography

[1] Y. Cao, H. Su, L. Ge, Y. Li, Y. Wang, L. Xie, B. Li, J. Hazard. Mater. 365, 413–420 (2019).
[2] K.R. Overdeep, H. Joress, L. Zhou, K.J.T. Livi, S.C. Barron, M.D. Grapes, K.S. Shanks, D.S. Dale, M.W. Tate, H.T. Philipp, S.M. Gruner, T.C. Hufnagel, T.P. Weihs, Combust. Flame. 191, 442–452 (2018).
[3] H. Nersisyan, B.U. Yoo, S.C. Kwon, D.Y. Kim, S.K. Han, J.H. Choi, J.H. Lee, Combust. Flame. 183, 22–29. (2017)
[4] K.R. Overdeep, K.J.T. Livi, D.J. Allen, N.G. Glumac, T.P. Weihs, Combust. Flame. 162, 2855-2864 (2015).
[5] D.W. Kim, K.T. Kim, G.H. Kwon, K. Song, I. Son, Sci. Rep. 9, 1-8 (2019).
[6] D.W. Kim, K.T. Kim, T.S. Min, K.J. Kim, S.H. Kim, Sci. Rep. 7, 1-9 (2017).
[7] K.T. Kim, D.W. Kim, C.K. Kim, Y.J. Choi, Mater. Lett. 167, 262- 265 (2016).
[8] J . Dai, D.M. Sullivan, M.L. Bruening, Ind. Eng. Chem. Res. 39, 3528-3535 (2000).
[9] C.A. Crouse, C.J. Pierce, J.E. Spowart, ACS Appl. Mater. Interfaces 2, 2560-2569 (2010).
[10] O . V. Kravchenko, K.N. Semenenko, B.M. Bulychev, K.B. Kalmykov, J. Alloys Compd. 397, 58-62 (2005).
[11] C.E. Bunker, M.J. Smith, K.A. Shiral Fernando, B.A. Harruff, W.K. Lewis, J.R. Gord, E.A. Guliants, D.K. Phelps, ACS Appl. Mater. Interfaces 2, 11-14 (2010).
[12] T. Otsuka, Y. Chujo, Polymer (Guildf) 50, 3174-3181 (2009).
[13] D. Dambournet, A. Demourgues, C. Martineau, S. Pechev, J. Lhoste, J. Majimel, A. Vimont, J.C. Lavalley, C. Legein, J.Y. Buzaré, F. Fayon, A. Tressaud, Chem. Mater. 20, 1459-1469 (2008).
[14] J . McCollum, M.L. Pantoya, S.T. Iacono, ACS Appl. Mater. Interfaces 7, 18742-18749 (2015).
[15] D.T. Osborne, M.L. Pantoya, Combust. Sci. Technol. 179, 1467- 1480 (2007).
Go to article

Authors and Affiliations

Won Young Heo
1
ORCID: ORCID
Sung Hwa Bae
2
ORCID: ORCID
Injoon Son
1
ORCID: ORCID

  1. Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu 41566, Republic of Korea
  2. Kyushu University, Department of Materials Process Engineering, Graduate School of Engineering, Fukuoka, Japan

This page uses 'cookies'. Learn more