Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Real-time data processing systems utilize Digital Signal Processing (DSP) functions as the base modules. Most of the DSP functions involve the implementation of Fast Fourier Transform (FFT) to convert the signals from one domain to another domain. The major bottleneck of Decimation in frequency- Fast Fourier Transform (DIF-FFT) implementation lies in using a number of Multipliers. Distributed arithmetic (DA) is considered as one of the efficient techniques to implement DIF-FFT. In this approach, the multipliers are not used. The proposed technique exploits the very advantage of the look-up table by storing the Twiddle factors, thereby avoiding the multipliers required in the butterfly structure. DIF-FFT using Distributed Arithmetic (DIF-FFT DA) models, with different adders such as Ripple carry adder (RCA), Carry-lookahead adder (CLA), and Sklansky prefix graph adder, are proposed in this paper. The three proposed models are synthesized using Cadence 6.1 EDA tools with a 45nm CMOS technology. Compared to the traditional method, it is observed that the area is improved by 53.11%, 53.35%, and 50.15%, power is improved by 42.31%, 42.52%, and 40.39%, and delay is improved by 45.26%, 45.42%, 41.80%, respectively.
Go to article

Bibliography

[1] H. Kim and S. Lekcharoen, “A cooley-tukey modified algorithm in fast fourier transform,” The Korean Journal of Mathematics, vol. 19, no. 3, 2011.
[2] J. Watson, “Digital signal processing: Principles, devices and applications.” Institution of Electrical Engineers, 1990.
[3] B. Mohindroo, A. Paliwal, and K. Suneja, “Fpga based faster implementation of mac unit in residual number system,” in 2020 International Conference for Emerging Technology (INCET). IEEE, 2020, pp. 1–4.
[4] R. Gonzalez-Toral, P. Reviriego, J. A. Maestro, and Z. Gao, “A scheme to design concurrent error detection techniques for the fast fourier transform implemented in sram-based fpgas,” IEEE Transactions on Computers, vol. 67, no. 7, pp. 1039–1045, 2018.
[5] K. K. Parhi, VLSI digital signal processing systems: design and implementation. John Wiley & Sons, 2007.
[6] D. Deepak and R. D. Kiran, “Hardware implementation of discrete cosine transform,” 2002.
[7] R. Guo and L. S. DeBrunner, “A novel adaptive filter implementation scheme using distributed arithmetic,” in 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR). IEEE, 2011, pp. 160–164.
[8] S. Patel, “Design and implementation of 31-order fir low-pass filter using modified distributed arithmetic based on fpga,” International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 2, no. 10, pp. 650–656, 2013.
[9] S. Venkatachalam and S.-B. Ko, “Approximate sum-of-products designs based on distributed arithmetic,” IEEE Transactions on very large scale integration (VLSI) systems, vol. 26, no. 8, pp. 1604–1608, 2018.
[10] K. N. Bowlyn and N. M. Botros, “A novel distributed arithmetic multiplierless approach for computing complex inner products,” in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA). The Steering Committee of The World Congress in Computer Science, Computer , 2015, p. 606.
[11] E. E. Swartzlander and C. E. Lemonds, Computer Arithmetic: Volume III. World Scientific, 2015.
[12] K. Vitoroulis and A. J. Al-Khalili, “Performance of parallel prefix adders implemented with fpga technology,” in 2007 IEEE Northeast Workshop on Circuits and Systems. IEEE, 2007, pp. 498–501.
[13] A. K. Y. Reddy and S. P. Kumar, “Performance analysis of 8-point fft using approximate radix-8 booth multiplier,” in 2018 3rd International Conference on Communication and Electronics Systems (ICCES). IEEE, 2018, pp. 42–45.
[14] A. Ajay and R. M. Lourde, “Vlsi implementation of an improved multiplier for fft computation in biomedical applications,” in 2015 IEEE Computer Society Annual Symposium on VLSI. IEEE, 2015, pp. 68–73.
[15] N. M. Sk et al., “Multi-mode parallel and folded vlsi architectures for 1d-fast fourier transform,” Integration, vol. 55, pp. 43–56, 2016.
Go to article

Authors and Affiliations

Kusma Kumari Cheepurupalli
1
Muntha Charan
1
Jammu Bhaskara Rao
1
Mahammad S. Noor
1

  1. Dept. of ECE, Gayatri Vidya Parishad College of Engineering, India
Download PDF Download RIS Download Bibtex

Abstract

This study proposes a surface profile and roughness measurement system for a fibre-optic interconnect based on optical interferometry. On the principle of Fizeau interferometer, an interference fringe is formed on the fibre end-face of the fibre-optic interconnect, and the fringe pattern is analysed using the Fast Fourier transform method to reconstruct the surface profile. However, as the obtained surface profile contains some amount of tilt, a rule for estimating this tilt value is developed in this paper. The actual fibre end-face surface profile is obtained by subtracting the estimated tilt amount from the surface profile, as calculated by the Fast Fourier transform method, and the corresponding surface roughness can be determined. The proposed system is characterized by non-contact measurement, and the sample is not coated with a reflector during measurement. According to the experimental results, the difference between the roughness measurement result of an Atomic Force Microscope (AFM) and the measurement result of this system is less than 3 nm.

Go to article

Authors and Affiliations

Chern S. Lin
Shih W. Yang
Hung L. Lin
Jhih W. Li
Download PDF Download RIS Download Bibtex

Abstract

Cavitation is an essential problem that occurs in all kinds of pumps. This cavitation contributes highly towards the deterioration in the performance of the pump. In industrial applications, it is very vital to detect and decrease the effect of the cavitation in pumps. Using different techniques to analysis and diagnose cavitation leads to increase in the reliability of cavitation detection. The use of various techniques such as vibration and acoustic analyses can provide a more robust detection of cavitation within the pump. In this work therefore, focus is put on detecting and diagnosing the cavitation phenomenon within a centrifugal pump using vibration and acoustic techniques. The results obtained from vibration and acoustic signals in time and frequency domains were analysed in order to achieve better understanding regarding detection of cavitation within a pump. The effect of different operating conditions related to the cavitation was investigated in this work using different statistical features in time domain analysis (TDA). Moreover, Fast Fourier Transform (FFT) technique for frequency domain analysis (FDA) was also applied. Furthermore, the comparison and evaluation system among different techniques to find an adequate technique incorporating for accuracy and to increase the reliability of detection and diagnosing different levels of cavitation within a centrifugal pump were also investigated.

Go to article

Authors and Affiliations

Ahmed Ramadhan Al-Obaidi
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classification approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
Go to article

Authors and Affiliations

Quanbo Lu
1
ORCID: ORCID
Mei Li
1

  1. School of Information Engineering, China University of Geosciences, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

A diagnostic technique based on independent component analysis (ICA), fast Fourier transform (FFT), and support vector machine (SVM) is suggested for effectively extracting signal features in infrasound signal monitoring. Firstly, ICA is proposed to separate the source signals of mixed infrasound sources. Secondly, FFT is used to obtain the feature vectors of infrasound signals. Finally, SVM is used to classify the extracted feature vectors. The approach integrates the advantages of ICA in signal separation and FFT to extract the feature vectors. An experiment is conducted to verify the benefits of the proposed approach. The experiment results demonstrate that the classification accuracy is above 98.52% and the run time is only 2.1 seconds. Therefore, the proposed strategy is beneficial in enhancing geophysical monitoring performance.
Go to article

Authors and Affiliations

Quanbo Lu
1
ORCID: ORCID
Meng Wang
1
Mei Li
1

  1. School of Information Engineering, China University of Geosciences, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

A lightning protection system (LPS) of an urban 110 kV substation is designed and analysed according to NFPA 780 and IEC 62305-3 standards. The analysis of the LPS is established on the value of risk assessment. The total area of the plant is described by one soil layer with uniform resistivity. This study aims to improve the understanding of an unexpected manner of the grounding system beneath lightning currents by clarifying the basic concepts of the lightning protection level and the new design procedure in this paper was clarified according to NFPA-780 level 1 for a lightning protection system. The program is integrated with the CDEGS software, which provides effective geometrical modeling with object and result visualization. Furthermore, module and automated fast Fourier transform (FFT) is implemented in this study to simulate electromagnetic fields in the time and frequency domains. These current values are compared to the desired protection levels within the standards. The study results show that for the improved protection of the system against lightning, the total power grid must be considered as a source of improvement for studying shielding influence and the protection levels provided inside this substation.

Go to article

Authors and Affiliations

Mohammed Ibrahim Taha
Lin Li
Ping Wang
Download PDF Download RIS Download Bibtex

Abstract

Afault diagnosis method for the rotating rectifier of a brushless three-phase synchronous aerospace generator is proposed in this article. The proposed diagnostic system includes three steps: data acquisition, feature extraction and fault diagnosis. Based on a dynamic Fast Fourier Transform (FFT), this method processes the output voltages of aerospace generator continuously and monitors the continuous change trend of the main frequency in the spectrum before and after the fault. The trend can be used to perform fault diagnosis task. The fault features of the rotating rectifier proposed in this paper can quickly and effectively distinguish single and double faulty diodes. In order to verify the proposed diagnosis system, simulation and practical experiments are carried out in this paper, and good results can be achieved.
Go to article

Authors and Affiliations

Sai Feng
1
Jiang Cui
1
Zhuoran Zhang
1

  1. Nanjing University of Aeronautics and Astronautics, College of Automation Engineering, Nanjing City, Jiangsu Province, 211100, China
Download PDF Download RIS Download Bibtex

Abstract

The popularity of high-efficiency permanent magnet synchronous motors in drive systems has continued to grow in recent years. Therefore, also the detection of their faults is becoming a very important issue. The most common fault of this type of motor is the stator winding fault. Due to the destructive character of this failure, it is necessary to use fault diagnostic methods that facilitate damage detection in its early stages. This paper presents the effectiveness of spectral and bispectrum analysis application for the detection of stator winding faults in permanent magnet synchronous motors. The analyzed diagnostic signals are stator phase current, stator phase current envelope, and stator phase current space vector module. The proposed solution is experimentally verified during various motor operating conditions. The object of the experimental verification was a 2.5 kW permanent magnet synchronous motor, the construction of which was specially prepared to facilitate inter-turn short circuits modelling. The application of bispectrum analysis discussed so far in the literature has been limited to vibration signals and detecting mechanical damages. There are no papers in the field of motor diagnostic dealing with the bispectrum analysis for stator winding fault detection, especially based on stator phase current signal.
Go to article

Authors and Affiliations

Przemysław Pietrzak
1
ORCID: ORCID
Marcin Wolkiewicz
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Department of Electrical Machines, Drives and Measurements, Wybrzeze Wyspia ˙ nskiego 27, ´ 50-370 Wrocław, Poland

This page uses 'cookies'. Learn more