Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study concerning an AlSi7Mg alloy and the effect of subjecting the liquid metal to four different processes: conventional refining with hexachloroethane; the same refining followed by modification with titanium, boron, and sodium; refining by purging with argon carried out in parallel with modification with titanium and boron salts and strontium; and parallel refining with argon and modification with titanium, boron, and sodium salts. The effect of these four processes on compactness of the material, parameters of microstructure, and fatigue strength of AlSi7Mg alloy after heat treatment. It has been found that the highest compactness (the lowest porosity ratio value) and the most favorable values of the examined parameters of microstructure were demonstrated by the alloy obtained with the use of the process including parallel purging with argon and modification with salts of titanium, boron, and sodium. It has been found that in the fatigue cracking process observed in all the four variants of the liquid metal treatment, the crucial role in initiation of fatigue cracks was played by porosity. Application of the process consisting in refining by purging with argon parallel to modification with Ti, B, and Na salts allowed to refine the microstructure and reduce significantly porosity of the alloy extending thus the time of initiation and propagation of fatigue cracks. The ultimate effect consisted in a distinct increase of the fatigue limit value.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
A. Trytek
ORCID: ORCID
Marek Mróz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the safety criteria of design for an infinite fatigue life of machinery parts. Uniaxial and multiaxial zero mean stress states are considered. In the latter case, constant-amplitude in-phase stress components, as well as random-amplitude synchronous stress components, are taken into account. Dimensionless and relative safety margins for these stress states are defined. The presented criteria refer to ductile materials showing true fatigue limits. Transformation rules in the plane are given for fatigue limits referenced to coordinate system different than the components of the plane stress.
Go to article

Authors and Affiliations

Janusz Kolenda
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, the excavation of the energetic approach that estimates the fatigue crack initiation life of metal is conducted for H62 brass. The benefit of the energetic approach is the division of the actual applied strain range Δε into two parts, that is, a damage strain range Δεd that induces fatigue damage within the metal, and an undamaged strain range Δεc, which does not produce fatigue damage of the metal and corresponds to theoretical strain fatigue limit. The brightness of this approach is that the undamaged strain range Δεc can be estimated by the fundamental conventional parameters of metal in tensile test. The result indicated that the fatigue crack initiation life of H62 brass can be estimated by this approach successfully.
Go to article

Authors and Affiliations

M. Zheng
1
ORCID: ORCID
S. Zhang
1
ORCID: ORCID
X.J. Peng
1
ORCID: ORCID
Y. Wang
1
ORCID: ORCID

  1. Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China

This page uses 'cookies'. Learn more