Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The solubility of Fe in aluminium alloys is known to be a problem in the casting of aluminium alloys. Due to the formation of various intermetallic phases, the mechanical properties decrease. Therefore, it is important to determine the formation mechanisms of such intermetallic. In this work, A360 alloy was used, and Fe additions were made. The alloy was cast into the sand and die moulds that consisted of three different thicknesses. In this way, the effect of the cooling rate was investigated. The holding time was selected to be 5 hours and every hour, a sample was collected from the melt for microstructural analysis. Additionally, the melt quality change was also examined by means of using a reduced pressure test where the bifilm index was measured. It was found that the iron content was increased after 2 hours of holding and the melt quality was decreased. There was a correlation between the duration and bifilm index. The size of Al-Si-Mn-Fe phases was increased in parallel with the bifilm content regardless of the iron content.
Go to article

Bibliography

[1] Bjurenstedt, A., Ghassemali, E., Seifeddine, S. & Dahle, A.K. (2019). The effect of Fe-rich intermetallics on crack initiation in cast aluminium: An in-situ tensile study. Materials Science and Engineering: A. 756, 502-507. DOI:10.1016/j.msea.2018.07.044
[2] Ferraro, S. & Timelli, G. (2015). Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys. Metallurgical and Materials Transactions B. 46(2), 1022-1034. DOI:10.1007/s11663-014-0260-3
[3] Ma, Z., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2008). A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Materials Science and Engineering: A. 490(1-2), 36-51. https://doi.org/10.1016/j.msea.2008.01.028
[4] Zahedi, H., Emamy, M., Razaghian, A., Mahta, M., Campbell, J. & Tiryakioğlu, M. (2007). The effect of Fe-rich intermetallics on the Weibull distribution of tensile properties in a cast Al-5 pct Si-3 pct Cu-1 pct Fe-0.3 pct Mg alloy. Metallurgical and Materials Transactions A. 38(3), 659-670. DOI: 10.1007/s11661-006-9068-3
[5] Tunçay, T., Özyürek, D., Dişpinar, D. & Tekeli, S. (2020). The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy. Transactions of the Indian Institute of Metals. 73(5), 1273-1285. DOI: 10.1007/s12666-020-01970-4
[6] Gao, T., Hu, K., Wang, L., Zhang, B. & Liu, X. (2017). Morphological evolution and strengthening behavior of α-Al (Fe, Mn) Si in Al–6Si–2Fe–xMn alloys. Results in physics. 7, 1051-1054. https://doi.org/10.1016/j.rinp.2017.02.040
[7] Gorny, A., Manickaraj, J., Cai, Z. & Shankar, S. (2013). Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. Journal of Alloys and Compounds. 577, 103-124. DOI: 10.1016/j.jallcom.2013. 04.139
[8] Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. https://doi.org/10.1016/j.mspro.2012.06.004
[9] Khalifa, W., Samuel, F. & Gruzleski, J. (2003). Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metallurgical and Materials Transactions A. 34(13), 807-825. DOI:10.1007/s11661-003-1009-9
[10] Liu, L., Mohamed, A., Samuel, A., Samuel, F., Doty, H. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys. Metallurgical and Materials Transactions A. 40(10), 2457-2469. DOI:10.1007/s11661-009-9944-8
[11] Tupaj, M., Orłowicz, A., Mróz, M., Trytek, M. & Markowska, O. (2016). Usable properties of AlSi7Mg alloy after sodium or strontium modification. Archives of Foundry Engineering. 16(3), 129-132. DOI:10.1515/afe-2016-0064
[12] Dinnis, C.M., Taylor, J.A. & Dahle, A. (2006). Iron-related porosity in Al–Si–(Cu) foundry alloys. Materials Science and Engineering: A. 425(1-2), 286-296. DOI: 10.1016/j.msea.2006.03.045
[13] Mikołajczak, M. & Ratke, L. (2015). Three dimensional morphology of β-Al5FeSi intermetallics in AlSi alloys. Archives of Foundry Engineering. 15(1), 47-50. DOI:10.1515/afe-2015-0010
[14] Tunçay, T., Tekeli, S., Özyürek, D. & Dişpinar, D. (2017). Microstructure–bifilm interaction and its relation with mechanical properties in A356. International Journal of Cast Metals Research. 30(1), 20-29. https://doi.org/10.1080/13640461.2016.1192826
[15] Cao, X. & Campbell, J. (2000). Precipitation of primary intermetallic compounds in liquid Al 11.5 Si 0.4 Mg alloy. International Journal of Cast Metals Research. 13(3), 175-184. https://doi.org/10.1080/13640461.2000.11819400
[16] Cao, X. & Campbell, J. (2003). The nucleation of Fe-rich phases on oxide films in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 34(7), 409-1420.
[17] Cao, X. & Campbell, J. (2004). Effect of precipitation and sedimentation of primary α-Fe phase on liquid metal quality of cast Al–11.1 Si–0.4 Mg alloy. International Journal of Cast Metals Research. 17(1), 1-11. https://doi.org/10.1179/136404604225014792
[18] Cao, X. & Campbell, J. (2004). The solidification characteristics of Fe-rich intermetallics in Al-11.5 Si-0.4 Mg cast alloys. Metallurgical and Materials Transactions A. 35(5), 1425-1435. DOI:10.1007/s11661-004-0251-0
[19] Bjurenstedt, A., Casari, D., Seifeddine, S., Mathiesen, R.H. & Dahle, A.K. (2017). In-situ study of morphology and growth of primary α-Al (FeMnCr) Si intermetallics in an Al-Si alloy. Acta Materialia. 130, 1-9.
[20] Shabestari, S. (2004). The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Materials Science and Engineering: A. 383(2), 289-298. https://doi.org/10.1016/j.msea.2004.06.022
[21] Ferraro, S., Fabrizi, A. & Timelli, G. (2015). Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Materials Chemistry and Physics. 153, 168-179. DOI:10.1016/j.matchemphys. 2014.12.050
[22] Dispinar D. & Campbell, J. (2014). Reduced pressure test (RPT) for bifilm assessment. In: Tiryakioğlu, M., Campbell, J., Byczynski, G. (eds) Shape Casting: 5th International Symposium 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-48130-2_30.
[23] Gyarmati G. et al., (2021). Controlled precipitation of intermetallic (Al, Si) 3Ti compound particles on double oxide films in liquid aluminum alloys. Materials Characterization. 181, 111467. https://doi.org/10.1016/j.matchar.2021.111467
[24] Podprocká, R., Malik, J. & Bolibruchová, D. (2015). Defects in high pressure die casting process. Manufacturing technology. 15(4), 674-678. DOI: 10.21062/ujep/x.2015/a/ 1213-2489/MT/15/4/674
[25] Samuel, A. Samuel, F. & Doty, H. (1996). Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys. Journal of Materials Science. 31(20), 5529-5539. DOI:10.1080/13640461.2001.11819429
[26] Gyarmati, G., Fegyverneki, G., Mende, T. & Tokár, M. (2019). Characterization of the double oxide film content of liquid aluminum alloys by computed tomography. Materials Characterization. 157, 109925. DOI:10.1016/j.matchar. 2019.109925
[27] Liu, K., Cao, X. & Chen, X.-G. (2011). Solidification of iron-rich intermetallic phases in Al-4.5 Cu-0.3 Fe cast alloy. Metallurgical and Materials Transactions A. 42(7), 2004-2016. DOI: 10.1007/s11661-010-0578-7
Go to article

Authors and Affiliations

E.N. Bas
1
S. Alper
1
T. Tuncay
2
ORCID: ORCID
D. Dispinar
3
ORCID: ORCID
S. Kirtay
1
ORCID: ORCID

  1. Istanbul University-Cerrahpasa, Turkey
  2. Karabuk University, Turkey
  3. Foseco, Netherlands

This page uses 'cookies'. Learn more