Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Operating conditions turbocharger (high temperature and corrosive environment) mean that the device is classified into one of the most elements of the emergency drive unit of the car. The failure rate can be reduced through the use of modern heat-resistant materials, which include based alloys FeAl intermetallic phase. Intermetallic alloys belong to the group of materials known as prospective due to their advantageous properties, in particular their high specific strength, high melting point and good resistance to corrosion and oxidation at high temperatures. In the article presented results of the research axis roll control system variable geometry blades made of intermetallic alloy Fe40Al5Cr0,2TiB as a substitute so far made of austenitic steel. A verification service conditions, comparing the degradation of the material previously used by manufacturers of turbochargers for elements of the control system degradation axes made of intermetallic alloy Fe40Al5Cr0,2TiB. The study consisted of determining microstructure and corrosion products after use. Observations of the structure and the surface of the corrosion tests were performed using light microscopy, scanning electron microscopy and X-ray microanalysis EDS chemical composition.

Go to article

Authors and Affiliations

J. Cebulski
D. Pasek
Download PDF Download RIS Download Bibtex

Abstract

Metal alloys with matrix based on an Fe-Al system are generally considered materials for high-temperature applications. Their main advantages are compact crystallographic structure, long-range ordering and structural stability at high temperatures. These materials are based on an intermetallic phase of FeAl or Fe3Al, which is stable in the range from room temperature up to the melting point of 1240°C. Their application at high temperatures is also beneficial because of the low cost of production, very good resistance to oxidation and corrosion, and high mechanical strength. The casting alloy the structure of which includes the FeAl phase is, among others, highaluminium cast iron. This study has been devoted to the determination of the effect of vanadium and titanium on the transformation of the high-aluminium cast iron structure into an in-situ FeAl-VC composite.
Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
R. Gilewski
A. Szczęsny
J. Dorula
Download PDF Download RIS Download Bibtex

Abstract

This study presents an analysis of aluminium cast iron structure (as-cast condition) which are used in high temperatures. While producing casts of aluminium iron, the major influence has been to preserve the structure of the technological process parameters. The addition of V, Ti, Cr to an Fe-C-Al alloy leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in an aluminium cast iron structure and thereby improve the production process. V and Ti additions to aluminium cast iron allow the development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened the Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
R. Gilewski
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
A. Góral
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results and provides an analyse of the geometric structure of Fe-Al protective coatings, gas-treated under specified GDS conditions. The analysis of the surface topography was conducted on the basis of the results obtained from the SEM data. Topographic images were converted to three-dimensional maps, scaling the registered amplitude coordinates of specific gray levels to the relative range of 0÷1. This allowed us to assess the degree of surface development by determining the fractal dimension. At the same time, the generated three-dimensional spectra of the autocorrelation function enabled the researchers to determine the autocorrelation length (Sal) and the degree of anisotropy (Str) of the surfaces, in accordance with ISO 25178. Furthermore, the reconstructed three-dimensional images of the topography allowed us to evaluate the functional properties o the studied surfaces based on the Abbott-Firestone curve (A-F), also known as the bearing area curve. The ordinate describing the height of the profile was replaced by the percentage of surface amplitude in this method, so in effect the shares of the height of the three-dimensional topographic map profiles of various load-bearing properties were determined. In this way, both the relative height of peaks, core and recesses as well as their percentages were subsequently established.

Go to article

Authors and Affiliations

T. Chrostek
K. Rychlik
M. Bramowicz
C. Senderowski
Download PDF Download RIS Download Bibtex

Abstract

Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.

Go to article

Authors and Affiliations

Hanzhong Jia
Song Zhao
Xiehong Zhou
Chengtun Qu
Daidi Fan
Chuanyi Wang
Download PDF Download RIS Download Bibtex

Abstract

Particles of the Fe-Al type (less than 50 µm in diameter) were sprayed onto the 045 steel substrate by means of the detonation method. The TEM, SAED and EDX analyses revealed that the Fe-Al particles have been partially melted in the experiment of coating formation. Particle undergone melting even within about 80% of its volume. Therefore, solidification of the melted part of particles was expected. Solidification differed significantly due to a large range of chemical composition of applied particles (from 15 at.% Al up to 63 at.% Al). A single particle containing 63 at.% Al was subjected to the detailed analysis, only. The TEM / SAED techniques revealed in the solidified part of particle three sub-layers: an amorphous phase, A ε , periodically situated FeAl + Fe2Al5 phases, and a non-equilibrium phase, Nε . A hypothesis dealing with the inter-metallic phases formation in such a single particle of the nominal composition 0 N = 0.63 is presented. At first, the solid / liquid system is treated as an interconnection: substrate liquid nonmelted particle part / / . Therefore, it is suggested that the solidification occurs simultaneously in two directions: towards a substrate and towards a non-melted part of particle. The solidification mechanism is referred to the Fe-Al meta-stable phase diagram. It is shown that the melted part of particle solidifies rapidly according to the phase diagram of meta-stable equilibrium and at a significant deviation from the thermodynamic equilibrium.

Go to article

Authors and Affiliations

C. Senderowski
W. Wołczyński
J. Morgiel
G. Garzeł
A. Pawłowski
Download PDF Download RIS Download Bibtex

Abstract

Stacks of the Pleistocene tills and associated airfall/slopewash/colluvial sediment abound on East African Mountains but few localities exist where thick deposits of middle to Late Pleistocene age can be studied to bedrock with topography the main soil-forming agent over <0.8 Ma. Two tills form the main structure of the catena, the oldest buried in the crest, backslope and footslope of the deposit, the youngest forming the crest and upper backslope, with massive colluvial infill forming a still younger sediment mass superposed on older sediment in the lower backslope, footslope and toeslope, the latter all radiocarbon dated to within the last glaciation (Liki on Mt. Kenya; Weichselian in Europe, Wisconsin in North America). The moraine stack, first identified by J.W. Gregory in the late 19th century, as belonging to the ‘Older Glaciation’ (Illinoian in North America; Teleki on Mt. Kenya), is much older than originally thought with tills and other paraglacial sediment extending to saprolitic bedrock, paleomagnetic assessment and relative weathering indices placing the mass in the Brunhes Chron. These results demonstrate that despite erosion and weathering, paleosols in toposequences near the margins of successive glaciations retain properties allowing reconstruction of environmental changes over long periods of time.
Go to article

Authors and Affiliations

William C. Mahaney
1
Ronald G.V. Hancock
2

  1. Quaternary Surveys, 26 Thornhill Ave., Thornhill, Ontario, Canada, L4J1J4 and Department of Geography, York University, 4700 Keele St. N. York, Ontario, Canada, M3J 1P3
  2. Department of Anthropology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1

This page uses 'cookies'. Learn more