Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 43
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recently, a new class of ceramic foams with porosity levels up to 90% has been developed as a result of the association of the gelcasting process and aeration of the ceramic suspension. This paper presents and discusses original results advertising sound absorbing capabilities of such foams. The authors man- ufactured three types of alumina foams in order to investigate three porosity levels, namely: 72, 88, and 90%. The microstructure of foams was examined and typical dimensions and average sizes of cells (pores) and cell-linking windows were found for each porosity case. Then, the acoustic absorption coefficient was measured in a wide frequency range for several samples of various thickness cut out from the foams. The results were discussed and compared with the acoustic absorption of typical polyurethane foams proving that the alumina foams with high porosity of 88-90% have excellent sound absorbing properties competitive with the quality of sound absorbing PU foams of higher porosity.
Go to article

Authors and Affiliations

Tomasz G. Zieliński
Marek Potoczek
Romana E. Śliwa
Łukasz J. Nowak
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to the strength analysis of a simply supported three layer beam. The sandwich beam consists of: two metal facings, the metal foam core and two binding layers between the faces and the core. In consequence, the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of this beam, analytical description and a solution of the three-point bending problem. The beam is subjected to a transverse load. The nonlinear hypothesis of the deformation of the cross section of the beam is formulated. Based on the principle of the stationary potential energy the system of four equations of equilibrium is derived. Then deflections and stresses are determined. The influence of the binding layers is considered. The results of the solutions of the bending problem analysis are shown in the tables and figures. The analytical model is verified numerically using the finite element analysis, as well as experimentally.

Go to article

Authors and Affiliations

M.J. Smyczyński
E. Magnucka-Blandzi
Download PDF Download RIS Download Bibtex

Abstract

The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.

Go to article

Authors and Affiliations

P. Lichy
V. Bednarova
T. Elbel
Download PDF Download RIS Download Bibtex

Abstract

Internal structure of metal foams is one of the most important factors that determine its mechanical properties. There exists a number of methods for studying the nature of the inner porous structure. Unfortunately most of these processes is destructive and therefore it is not possible to reuse the sample. From this point of view, as a suitable method seems to be the ability of using the so-called X-ray microtomography (also micro-CT). This is a non-destructive methodology used in a number of fields (industry, science, archaeology, medicine) for a description of the material distribution in the space (e.g. pores, fillers, defects, etc.). In principle, this technology works on different absorption of X-ray radiation by materials with changing proton number. The contribution was worked out in collaboration with experts from the Faculty of Electrical Engineering and Computer Science of the VŠB-Technical University of Ostrava and it is focused on the analysis of internal structure of the metal foam casting with irregular arrangement of internal pores by using micro-CT. The obtained data were evaluated in the commercial software VGStudio MAX 2.2 and in the FOTOMNG system. For the evaluation of these data a new specialized module was introduced in this system. Several methods of pre-processing the image was prepared for the measurement. This preliminary processing consists, for example, from a binary image thresholding for better diversity between the internal porosity and the material itself or functions for colour inversion.

Go to article

Authors and Affiliations

I. Kroupová
P. Lichý
L. Ličev
J. Hendrych
K. Souček
Download PDF Download RIS Download Bibtex

Abstract

The article describes the design of a proven technology for the production of metal foam and porous metal by the foundry. Porous metal formed by infiltrating liquid metal into a mould cavity appears to be the fastest and most economical method. However, even here we cannot do without the right production parameters. Based on the research, the production process was optimised and subsequently a functional sample of metal foam with an irregular internal structure - a filter - was produced. The copper alloy filter was cast into a gypsum mould using an evaporable model.
Furthermore, a functional sample of porous metal with a regular internal structure was produced - a heat exchanger. The aluminium alloy heat exchanger was cast into a green sand mould using preforms. Also, a porous metal casting with a regular internal structure was formed for use as an element in deformation zones. This aluminium alloy casting was made by the Lost Foam method. The aim is therefore to ensure the production of healthy castings, which would find use in the field of filtration of liquid metal or flue gases, in vehicles in the field of shock energy absorption and also in energy as a heat exchanger.
Go to article

Bibliography

[1] Lefebvre, L.P., Banhart, J. & Dunand, D. (2008). Porous metals and metallic foams: current status and recent developments. Advanced Engineering Materials. 10(9), 775-787.
[2] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632.
[3] Banhart, J. (2007). Metal Foams - from Fundamental Research to Applications [online], URL: < https://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/B-Conferences/b097_banhart2007.pdf>.
[4] Gaillard, Y., Dairon, J., & Fleuriot, M. (2011). Porous materials: innovations with many uses. Slévárenství. 11-12, roč. LIX, 374-378. (in Czech).
[5] Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design. 37, Nos. 2/3, 114-125. [online]. URL: < http://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/A-Journals/open/article/a082_banhart2005.pdf>.
[6] García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. [online]. URL: < http://www.mdpi.com/1996-1944/9/2/85/html>.
[7] Banhart, J. Metallic Foams II: properties and application [online]. URL: < http://materialsknowledge.org/docs/ Banhart-talk2.pdf>.
[8] Landolsi, M.W. (2016). Metal foam - an innovative material. [online]. URL: < https://conceptec.net/actualites/innovations/ 111-mousse-metallique-un-materiau-innovant>. (in Czech).
[9] Lulusoso. Composite cladding panel manufacturers [online]. URL: < http://www.lulusoso.com/products/ Composite-Cladding-Panel-Manufacturers.html>.
[10] Erg Materials and Aerospace; Duocel® Foam Cells. [online]. URL: < http://www.ergaerospace.com/products/ fuel-cells.html>.
[11] Kroupová, I., Lichý, P., Ličev, L., Hendrych, J. & Souček, K. (2018). Evaluation of properties of cast metal foams with irregular inner structure. Archives of Metallurgy and Materials. 63(4), 1845-1849. ISSN 1733-3490.
[12] Kroupova, I., Bednarova, V., Elbel, T. & Radkovsky, F. (2014). Proposal of method of removal of mould material from the fine structure of metallic foams used as filters. Archives of Metallurgy and Materials. 59(2), 727-730. ISSN 1733-3490.
[13] Yamada. Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H. & Higashi, K. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering: A. 280(1), 225-228. DOI: https://doi.org/ 10.1016/S0921-5093(99)00671-1.
[14] Gawdzinska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal-ceramic composite foams. Archives of Metallurgy and Materials. 17(4), 47-50. ISSN 1897-3310.
[15] Haack, P.D., Butcher, R.P., Kim, T. & Lu, J.T. (2001). Novel lightweight metal foam heat exchangers. porvair fuel cell technology, Inc., Department of Engineering, University of Cambridge. January, [online]. URL: < https://www.researchgate.net/publication/267721239_Novel_Lightweight_Metal_Foam_Heat_Exchangers>.
[16] Radkovský, F., Merta, V. (2020). Use of numerical simulation in production of porous metal casting. Archives of Metallurgy and Materials. 54(2), 259-261. ISSN 1580-2949. DOI: 10.17222/mit.2019.145.
[17] Radkovský, F., Gebauer, M., Kroupová, I., Lichý, P. (2017). Metal foam as a heat exchanger. In METAL 2017, Conference proceedings, 26th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, 24. - 26. 5. 2017, Hotel Voroněž I, Brno.
[18] Lu, T.J., Stone, H.A. & Ashby, M.F. (1998). Heat transfer in open-cell metal foams. Acta Materialia. 46(10, 12) June, 3619-3635. DOI: https://doi.org/10.1016/S1359-6454(98) 00031-7
[19] Boomsma, K., Poulikakos, D. & Zwick, F. (2003). Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35(12), 1161-1176. DOI: https://doi.org/10.1016/j.mechmat.2003.02.001.
[20] Hutter, C., Büchi, D., Zuber, V. & Rohr, R. (2011). Heat transfer in metal foams and designed porous media. Chemical Engineering Science. 66(17), 1 September 2011, 3806-3814. DOI: https://doi.org/10.1016/j.ces.2011.05.005
[21] Lichý, P., Elbel, T., Kroupová, I. & Radkovský, F. (2017). Preparation and evaluation of properties of cast metallic foams with regular inner structure. Archives of Metallurgy and Materials. 62(3), 1643-1646. ISSN 1733-3490. DOI: 10.1515/amm-2017-0251.
[22] Romanek, T. (2017). Manufacturing and Properties of Cast Metallic Foams with Regular Structure, Ostrava, Diploma thesis, VSB - Technical University of Ostrava, [online]. URL: http://www.ergaerospace.com/products/fuel-cells.htm>.
[23] Radkovský, F., Gebauer, M. & Merta, V. (2018). Optimizing of metal foam design for the use as a heat exchanger. Archives of Metallurgy and Materials. 63(4), 1875-1881. ISSN 1733-3490.

Go to article

Authors and Affiliations

F. Radkovský
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this work, the influence of plastic injection molding conditions, mainly plasticizing conditions: plasticizing pressure (back pressure) and decompression (suck-back) after dosing on weight, thickness, mechanical properties and structure of HDPE parts obtained by injection molding with the addition of chemical blowing agent was done. In order to enable the manufacturing of correctly made molded parts under given plasticizing conditions, other parameters (hold time and hold pressure, injection velocity and injection time) were also changed. It was found that making correct molded parts using decompression requires increased hold pressure and hold time. The share of the porous structure in the parts is inversely proportional to the decompression as well as the hold pressure and hold time, while the plasticizing pressure has little effect on thickness, mass, tensile strength and elongation at maximum force, however, it affects the structure of the molded parts to some extent.
Go to article

Authors and Affiliations

P. Palutkiewicz
1
ORCID: ORCID
P. Postawa
1
ORCID: ORCID
J. Wawrzyniak
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the utilization of hydrated lime and zeolites as additives in warm mix asphalt produced with foamed bitumen. The mentioned additives were added to the mixtures in exchange for specific quantities of mineral filler, which amounted to 0.4% and 1.2% of hydrated lime or 0.4% of water-modified and 1.0% of air-dry zeolites in mineral mix. The study investigated warm-produced mixtures with 4.5% and 4.8% binder content and production and compaction temperatures set at 120⁰C and 100⁰C respectively. Additionally, reference hot and warm mixtures were evaluated. The testing included: air void content, indirect tensile strength in dry state and after one freeze-thaw cycle as well as the resulting resistance to moisture and frost damage index. The mixtures incorporating hydrated lime and lower bitumen content of 4.5% exhibited increased air voids and mostly unchanged mechanical performance when compared to the reference warm mix. Increased bitumen content has resulted in significantly improved performance in moisture resistance and compactability which could be compared to that of the reference hot-produced mixture. On the other hand, the incorporation of zeolites in the foamed bitumen mixtures resulted in all cases in increased air void content in the samples. This has apparently led to decreased indirect tensile strength, in both the dry state and after the freeze-thaw cycle. Based on the results it was concluded that the production temperature of the zeolite-bearing mixtures was too low for the zeolite water to significantly improve the mix’ workability and therefore positively affect its mechanical parameters.
Go to article

Bibliography

  1.  A. Chomicz-Kowalska, W. Gardziejczyk, and M.M. Iwański, “Moisture resistance and compactibility of asphalt concrete produced in half- warm mix asphalt technology with foamed bitumen”, Constr. Build. Mater. 126, 108–118 (2016), doi: 10.1016/j.conbuildmat.2016.09.004.
  2.  A. Chomicz-Kowalska, W. Gardziejczyk, and M.M. Iwański, “Analysis of IT-CY Stiffness Modulus of Foamed Bitumen Asphalt Concrete Compacted at 95°C”, Procedia Eng. 172, 550–559 (2017), doi: 10.1016/j.proeng.2017.02.065.
  3.  M.R. Mohd Hasan, Z. You, and X. Yang, “A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques”, Constr. Build. Mater. 152, 115–133 (2017), doi: 10.1016/j.conbuildmat.2017.06.135.
  4.  E. Remišová and M. Holý, “Changes of Properties of Bitumen Binders by Additives Application”, in IOP Conf. Ser.: Mater. Sci. Eng. 245(3), 032003 (2017), doi: 10.1088/1757-899X/245/3/032003.
  5.  M. M. Iwański, A. Chomicz-Kowalska, and K. Maciejewski, “Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics”, Materials (Basel). 12(21), 3514, (2019), doi: 10.3390/ma12213514.
  6.  O. Larsen, Ø. Moen, C. Robertus, and B.G. Koenders, “WAM Foam asphalt production at lower operating temperatures as an environmental friendly alternative to HMA”, 3rd Eurasphalt Eurobitume Congr., 2004, pp. 641–650. [Online]. Available: http://www.shell.com/content/ dam/shell/static/bitumen/downloads/wam-field-test-resultseurasphaltcongress.pdf.
  7.  A. Chomicz-Kowalska and K. Maciejewski, “Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements”, J. Clean. Prod. 258, 120517 (2020), doi: 10.1016/j.jclepro.2020.120517.
  8.  F. Yin, E. Arambula, and D. E. Newcomb, “Effect of water content on binder foaming characteristics and foamed mixture properties”, Transp. Res. Rec. 2506, 1–7 (2015), doi: 10.3141/2506-01.
  9.  K. Maciejewski, “Wpływ rodzaju dodatku i starzenia krótkoterminowego na właściwości wysokotemperaturowe asfaltów drogowych przeznaczonych do mieszanek mineralno-asfaltowych wytwarzanych w technologii „na ciepło” z asfaltem spienionym wodą”, Ph.D Thesis, Kielce University of Technology, Kielce, 2019, [in Polish].
  10.  M. Iwański, G. Mazurek, and P. Buczyński, “Bitumen foaming optimisation process on the basis of rheological properties”, Materials (Basel). 11(10), 1854 (2018), doi: 10.3390/ma11101854.
  11.  A. Chomicz-Kowalska, K. Maciejewski, and M.M. Iwański, “Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete”, Materials (Basel). 13(2), 357 (2020), doi: 10.3390/ ma13020357.
  12.  E. Lippmaa, M. Mági, A. Samoson, M. Tarmak, and G. Engelhardt, “Investigation of the Structure of Zeolites by Solid-State High- Resolution 29Si NMR Spectroscopy”, J. Am. Chem. Soc. 103(17), 4992–4996 (1981), doi: 10.1021/ja00407a002.
  13.  A. Sassani, “A Multi-Scale Approach to Characterization of Volcanic Natural Pozzolans”, Middle East Technical University, Ankara, 2014.
  14.  A. Sassani, L. Turanlı, A.-H. Emwas, and Ç. Meral, “Mechanical performance, durability and aluminosilicate chain structure of high volume zeolitic natural pozzolan – portland cement based systems”, in Zeolite 2014 – 9th International Conference on the Occurrence, Properties and Utilization of Natural Zeolites, 2014, pp. 209–201.
  15.  N.Q. Feng and G.F. Peng, “Applications of natural zeolite to construction and building materials in China”, Constr. Build. Mater. 19(8), 579–584 (2005), doi: 10.1016/j.conbuildmat.2005.01.013.
  16.  B. Lai, C. Barros, and H. Yin, “Investigation of rheological behavior of asphalt binder modified by the Advera® additive”, in Poromechanics IV – 4th Biot Conference on Poromechanics, 2009, pp. 487–492.
  17.  A. Woszuk, R. Panek, J. Madej, A. Zofka, and W. Franus, “Mesoporous silica material MCM-41: Novel additive for warm mix asphalts”, Constr. Build. Mater. 183, 270–274 (2018), doi: 10.1016/j.conbuildmat.2018.06.177.
  18.  A. Woszuk and W. Franus, “Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives”, Constr. Build. Mater. 114, 556–563 (2016), doi: 10.1016/j.conbuildmat.2016.03.188.
  19.  A. Woszuk and W. Franus, “A review of the application of zeolite materials in warm mix asphalt technologies”, Appl. Sci. 7(3), 293 (2017), doi: 10.3390/APP7030293.
  20.  A. Woszuk, A. Zofka, L. Bandura, and W. Franus, “Effect of zeolite properties on asphalt foaming”, Constr. Build. Mater. 139, 247–255 (2017), doi: 10.1016/j.conbuildmat.2017.02.054.
  21.  D.E. Newcomb et al., “Properties of foamed asphalt for warm mix asphalt applications. NCHRP Report 807”, Washington DC, 2015.
  22.  H. Gong, Y. Sun, W. Hu, P.A. Polaczyk, and B. Huang, “Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests”, Constr. Build. Mater. 204, 203–212 (2019), doi: 10.1016/j.conbuildmat.2019.01.198.
  23.  R. Ghabchi, D. Singh, and M. Zaman, “Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes”, Road Mater. Pavement Des. 16(2), 334–357 (2015), doi: 10.1080/14680629.2014.1000943.
  24.  A. Chomicz-Kowalska, J. Mrugała, and K. Maciejewski, “Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent”, in IOP Conf. Ser.: Mater. Sci. Eng. 245(3), 032086 (2017), doi: 10.1088/1757-899X/245/3/032086.
  25.  J. Komačka and E. Remišová, “Investigation of the Relation between Adhesion and Water Sensitivity Test Results”, Slovak J. Civ. Eng. 27(4), 1–6 (2019), doi: 10.2478/sjce-2019-0024.
  26.  L. Gungat, N. I. M. Yusoff, and M.O. Hamzah, “Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders”, Constr. Build. Mater. 114, 665–672 (2016), doi: 10.1016/j.conbuildmat.2016.03.182.
  27.  M. Stienss and C. Szydlowski, “Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures”, Materials (Basel). 13(1), 202 (2020), doi: 10.3390/ma13010202.
  28.  K. Kowalski, J. Król, W. Bańkowski, P. Radziszewski, and M. Sarnowski, “Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent”, Appl. Sci. 7(3), 216 (2017), doi: 10.3390/app7030216.
  29.  M.M. Iwanski, A. Chomicz-Kowalska, and K. Maciejewski, “Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen”, Materials (Basel). 13(3), 654 (2020), doi: 10.3390/ma13030654.
  30.  A. Chomicz-Kowalska, “Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement”, Bull. Polish Acad. Sci. Tech. Sci. 65(6), 779‒790 (2017), doi: 10.1515/bpasts-2017-0086.
  31.  C.V. Chachas, W.J. Liddle, D.E. Peterson, and M.L. Wiley, “Use of hydrated lime in bituminous mixtures to decrease hardening of the asphalt cement (Report No. PB 213 170)”, 1971.
  32.  E. Seebaly, P.D.N. Little, and J. A. Epps, The Benefis of Hydrated Lime in Hot Mix Asphalt, The National Lime Association, Arlington, 2006.
  33.  J.C. Petersen, H. Plancher, and P.M. Harnsberger, “Lime Treatment of Asphalt to Reduce Age Hardening and Improve Flow Properties”, Assoc. Asph. Paving Technol. 56–87, 632–653 (1987).
  34.  M. Stroup-Gardiner and J.A. Epps, “Effect of lime on asphalt concrete pavement performance”, in Proceedings of the American Society Civil Engineers Materials Congress, 1990, pp. 921–930.
  35.  F. Luxemburg, “Lime Hydrate as an Additive to Improve the Adhesion of Bitumen to the Aggregates”, in Proc of the II International Conference Durable and Save Road Pavements, 1996, pp. 296–302.
  36.  D. Lesueur, J. Petit, and H. J. Ritter, “The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review”, Road Mater. Pavement Des. 14(1), 1–16 (2013), doi: 10.1080/14680629.2012.743669.
  37.  M. Iwański, Wapno hydratyzowane wielofunkcyjnym dodatkiem zwiększającym trwałość nawierzchni SMA. Monograph M59. Kielce: Kielce University of Technology, 2014, [in Polish]
  38.  H. Plancher, E.L. Green, and J.C. Petersen, “Reduction of Oxidative Hardening of Asphalts By Treatment With Hydrated Lime – a Mechanistic Study”, in Proc Assoc Asphalt Paving Technol, 1976, vol. 45, pp. 1–24.
  39.  C. Gorkem and B. Sengoz, “Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime”, Constr. Build. Mater. 23(6), 2227–2236 (2009), doi: 10.1016/j.conbuildmat.2008.12.001.
  40.  M.M. Iwański, “Synergia wapna hydratyzowanego i asfaltu spienionego w zapewnieniu trwałości eksploatacyjnej betonu asfaltowego w technologii na półciepło”, Ph.D Thesis, Politechnika Świętokrzyska, 2019.
  41.  M. Kadela, “Model of multiple-layer pavement structure-subsoil system”, Bull. Polish Acad. Sci. Tech. Sci. 64(4), 751–762 (2016), doi: 10.1515/bpasts-2016-0084.
  42.  EN 13108-1:2008. Bituminous mixtures. Material specifications. Asphalt Concrete.
  43.  WT-2 2014. Asphalt mixes. Technical Requirements. Appendix to ordinance No. 54 of the General Director of National Roads and Highways, 8.11.2014, 2014.
  44.  EN 12591:2009. Bitumen and bituminous binders. Specifications for paving grade bitumens.
  45.  WT-1 2014. Aggregates for Asphalt Mixes and Surface Dressings on National Highways. Technical Requirements. Appendix to ordinance No. 46 of the General Director of National Roads and Highways, 25.09.2014, [Online]. Available: www.gddkia.gov.pl.
  46.  E. Szewczak, A. Winkler-Skalna, and L. Czarnecki, “Sustainable Test Methods for Construction Materials and Elements”, Materials (Basel). 13(3), 606 (2020), doi: 10.3390/ma13030606.
  47.  A. Chomicz-Kowalska and K. Maciejewski, “Multivariate optimization of recycled road base cold mixtures with foamed bitumen”, Procedia Eng. 108, 436–444 (2015), doi: 10.1016/j.proeng.2015.06.168.
Go to article

Authors and Affiliations

Anna Chomicz-Kowalska
1
ORCID: ORCID
Krzysztof Maciejewski
1
ORCID: ORCID
Mateusz Marek Iwański
1
ORCID: ORCID
Karolina Janus
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of a study on axial dispersion in commercially available open cell metal (Nickelchromium) and ceramic (Vukopor A) foams with different pore density are presented. Residence time distributions were determined using tracer pulse experiments applying the convolution method to post process the recorded tracer concentration signals. The influence of liquid viscosity (water and 45 wt.% glycerol solution) and bed length (from 0.1 to 0.9 m) on axial dispersion was tested. It was found that fluid velocity, viscosity and foam morphology affected axial dispersion. Moreover, the axial dispersion coefficient for solid foams is lower than that of packed beds.
Go to article

Authors and Affiliations

Anna Gancarczyk
1
ORCID: ORCID
Adam Rotkegel
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Bałtycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of foam fractionation followed by aqueous two-phase extraction has emerged as a potential alternative to traditional liquid chromatography, hitherto irreplaceable in the purification of phycobiliproteins. The crude extracts of C-phycocyanin and allophycocyanin were obtained after Thermosynechococcus PCC 6715 biomass disintegration. The FF process with air flow of 2.4 L·h -1 resulted in purification factors up to 1.47 and partitioning coefficients of about 39, and did not require the addition of surfactants. A temperature of 35˚C allowed for the highest partitioning coefficient of 67.6 and yield of 76%; however, the purity of C-PC in condensate at this temperature was lower than at 25˚C. ATPE was tested in 20 different systems consisting of polyethylene glycol and phosphate or citrate salts, of which PEG1500-citrate gave the highest purification factor value of 2.31. Conversely, a partitioning coefficient of 2416 and 1094 were obtained for the PEG1500-phosphate and PEG3000-phosphate systems, respectively. Interestingly, the use of FF condensate in subsequent ATPE step resulted, for the first time, in the separation of the polymer phase into two fractions, one contained C-phycocyanin and the other allophycocyanin. It can be concluded that the use of a two-step system of FF and ATPE is a viable way to separate phycobiliproteins.
Go to article

Authors and Affiliations

Anna Antecka
1
ORCID: ORCID
Rafał Szeląg
1
Stanisław Ledakowicz
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Owing to its properties, metallic foams can be used as insulation material. Thermal properties of cast metal-ceramic composite foams have applications in transport vehicles and can act as fire resistant and acoustic insulators of bulkheads. This paper presents basic thermal properties of cast and foamed aluminum, the values of thermal conductivity coefficient of selected gases used in foaming composites and thermal capabilities of composite foams (AlSi11/SiC). A certificate of non-combustibility test of cast aluminum-ceramic foam for marine applications was included inside the paper. The composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal. Foams with closed and open cells were examined. The foams were foaming with foaming gas consisting of nitrogen or air. This work is one of elements of researches connected with description of properties of composite foams. In author's other works acoustic properties of these materials will be presented.

Go to article

Authors and Affiliations

K. Gawdzińska
L. Chybowski
W. Przetakiewicz
Download PDF Download RIS Download Bibtex

Abstract

The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.

Go to article

Authors and Affiliations

M. Nowak
Z. Nowak
R.B. Pęcherski
M. Potoczek
R.E. Śliwa
Download PDF Download RIS Download Bibtex

Abstract

The work reports on the development of random three-dimensional Laguerre-Voronoi computational models for open cell foams. The proposed method can accurately generate foam models having randomly distributed parameter values. A three-dimensional model of ceramic foams having pre-selected cell volumes distribution with stochastic coordinates and orientations was created in the software package ANSYSTM. Different groups of finite element models were then generated using the developed foam modeling procedure. The size sensitivity study shows that each of foam specimens at least contains 125 LV-cells. The developed foam models were used to simulate the macroscopic elastic properties of open cell foams under uni-axial and bi-axial loading and were compared with the existing open cell foam models in the literature. In the high porosity regime, it is found that the elastic properties predicted by random Laguerre-Voronoi foam models are almost the same as those predicted by the perfect Kelvin foam models. In the low porosity regime the results of the present work deviate significantly from those of other models in the literature. The results presented here are generally in better agreement with experimental data than other models. Thus, the Laguerre-Voronoi foam models generated in this work are quite close to real foam topology and yields more accurate results than other open cell foam models.

Go to article

Authors and Affiliations

Z. Nie
Y. Lin
Q. Tong
Download PDF Download RIS Download Bibtex

Abstract

In many wastewater treatment plants (WWTPs) inconveniences resulting from foam formation on the surface of activated sludge wastewater treatment devices appear. Foaming phenomenon is related to the characteristics of raw sewage and applied technological parameters of activated sludge process which promote the development of specific foam-forming filamentous microorganisms. In bulking activated sludges there are about 30 species of filamentous microorganisms and in the foam not more than about 1 O species. Basic method of identification of filamentous microorganisms present in foam are microscopic investigations which can be performed both in vivo by direct observation of no stained, so called living smears, with contrast - phase device and in stained smears alter different stain methods in direct light or dark field.
Go to article

Authors and Affiliations

Liliana Kalisz
Marcin Każrnierczuk
Download PDF Download RIS Download Bibtex

Abstract

Geometry of plate heat exchangers (PHE) is characterized by a complex net of narrow channels. It enhances turbulence and results in better heat transfer performance. Theoretically, larger number of channels (plates) should proportionally increase the PHE heat power capacity. In practice a nonuniform massflow distribution in consecutive flow channels can significantly deteriorate the overall heat exchange performance. The flow maldistribution is one of the most commonly reported exploitation problems and is present in PHE with and without phase-change flows. The presented paper investigates numerically a flow pattern in PHE with evaporation of R410A refrigerant. Various sizes of PHE are considered. The paper introduces a robust methodology to transform the complicated geometry of a real 3D PHE to its 2D representation. It results in orders of magnitude faster calculations and allows for fast evaluation of different geometrical changes of PHE and their effect on flow maldistribution.

Go to article

Authors and Affiliations

Paweł Pluszka
Arkadiusz Patryk Brenk
Ziemowit Miłosz Malecha
Download PDF Download RIS Download Bibtex

Abstract

Hydrodynamic disintegration of the activated sludge and foam results in organic matter transfer from the solid phase to the liquid phase. Hydrodynamic disintegration caused an increase of COD value in activated sludge and foam of 220 mgdm3 and 609 mgdm3 - respectively, besides the degree of disintegration increases to 38% and 47%- respectively- alter 30 minutes of disintegration. Hydrodynamic cavitation affects positively the degree of disintegration and rate of biogas production. Also addition of a part of digested sludge containing adapted microorganisms resulted in acceleration of the anaerobic process. Addition of disintegrated foam (20% and 40% of volume) to the fermentation processes resulted in an improvement in biogas production by about 173% and 195% respectively - in comparison to activated sludge without disintegration (raw sludge) and 142% and 161 % respectively - in comparison to activated sludge with a part of digested sludge (80% raw sludge + 20% digested sludge).
Go to article

Authors and Affiliations

Alicja Machnicka
Klaudiusz Grubel
Jan Suschka
Download PDF Download RIS Download Bibtex

Abstract

Most often sewage treatment and sludge disposal are handled as two separate technological parts of treatment plants. Attempts are made to change the practice. Keeping the standards of treated sewage is the primary objective, and sewage sludge is a by-product which has to he get rid of. The environmental consequences of various procedures of sludge disposal are rarely considered. On the other hand, incorporation of sludge handling procedures in the processes of sewage treatment can result in cost savings and be environmentally friendly. In the presented paper, suggestions arc given on possibilities of closer integration of sewage and sludge treatment, based on experiments. Research aimed at sewage sludge quantity minimization and quality upgrading, recovery of phosphorous and efficient nitrogen removal. Appearing occasionally scum floating over biological sewage treatment units was shown to be considered as an integrated part or sewage treatment and sludge handling at EBNRP's.
Go to article

Authors and Affiliations

Jan Suschka
Eligiusz Kowalski
Download PDF Download RIS Download Bibtex

Abstract

The study discusses an experimental method for treatment of high strength domestic sewage on biofilters filled with polyurethane (PUR) waste in the form of trims of upholstery foam. We determined effectiveness of two biological preparations containing effective microorganisms in elimination of organic and biogenic compounds, indicator bacteria and total suspended solids from the sewage pretreated in a septic tank. After four months of work under a hydraulic loading of 76.4 mm∙d -1 we found the filter with 60 cm foam layer to be the most efficient in the elimination of BOD 5, COD Cr, NH 4 +-N and coliform bacteria. An average reduction in these pollutants reached 79.4%, 67.8%, 58.0% and 88.0%, respectively. Vertical filters filled with trims of upholstery foam and supplied with effective microorganisms ensured favorable conditions for development of heterotrophic and nitrifying bacteria without any need for additional aeration.
Go to article

Authors and Affiliations

Krzysztof Chmielowski
1
ORCID: ORCID
Jan Pawełek
1
Ewa Dacewicz
1

  1. University of Agriculture in Kraków, Faculty of Environmental Engineering and Land Surveying
Download PDF Download RIS Download Bibtex

Abstract

The electrostatic impulse method is an established method for producing microbeads or capsules. Such particles have found application in biomedical engineering and biotechnology. The geometric properties of the droplets – constituting precursors of microbeads and capsules – can be precisely controlled by adjusting the geometry of the nozzle system, the physical properties and the flow rate of the fluids involved, as well as the parameters of the electrostatic impulse. In this work, a method of mathematical modeling of the droplet generation process using the electrostatic impulse method in a single nozzle system is presented. The developed mathematical model is an extension of the standard Volume of Fluid (VOF) model by addition of the effect of the electric field on the fluid flow. The model was implemented into the OpenFOAM toolkit for computational fluid dynamics (CFD). The performed CFD simulation results showed good agreement with experimental data. As a result, the influence of all process parameters on the droplet generation process was studied. The most significant change in droplet generation was caused by changing the electrostatic impulse strength. The presented modeling method can be used for optimization of process design and for studying the mechanisms of droplet generation. It can be extended to describe multi nozzle systems used for one-step microcapsule production.
Go to article

Authors and Affiliations

Piotr Cendrowski
1
ORCID: ORCID
Katarzyna Kramek-Romanowska
1
ORCID: ORCID
Dorota Lewińska
2
ORCID: ORCID
Marcin Grzeczkowicz
2
ORCID: ORCID
Paulina Korycka
3
ORCID: ORCID
Jan Krzysztoforski
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Ludwika Warynskiego 1, Warsaw, Poland
  2. Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, ul. Ks. Trojdena 4, Warsaw, Poland
  3. Foundation of Research and Science Development, Rydygiera 8, 01-793 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Biocomposite foam scaffolds of poly(ε-caprolactone) (PCL) with different porogenes were produced with batch foaming technique using supercritical carbon dioxide (scCO2) as a blowing agent. In performed experiments composites were prepared from graphene-oxide (nGO), nano-hydroxyapatite (nHA) and nano-cellulose (nC), with various concentrations. The objective of the study was to explore the effects of porogen concentration and foaming process parameters on the morphology and mechanical properties of three-dimensional porous structures that can be used as temporary scaffolds in tissue engineering. The structures were manufactured using scCO2 as a blowing agent, at two various foaming pressures (9 MPa and 18 MPa), at three different temperatures (323 K, 343 K and 373 K) for different saturation times (0.5 h, 1 h and 4 h). In order to examine the utility of porogenes, a number of tests, such as static compression tests, thermal analysis and scanning electron microscopy, have been performed. Analysis of experimental results showed that the investigated materials demonstrated high mechanical strength and a wide range of pore sizes. The obtained results suggest that PCL porous structures are useful as biodegradable and biocompatible scaffolds for tissue engineering.

Go to article

Authors and Affiliations

Katarzyna Sawicka
Katarzyna Kosowska
Marek Henczka
Download PDF Download RIS Download Bibtex

Abstract

Disposable foundry models constitute an increasingly important role in a unitary large-size foundry. These models have many benefits, but technologies using such materials require an understanding of degradation kinetics at the time of filling. The studies presented in the article determine the size of the polystyrene combustion products used for disposable foundry models. The results were obtained by carrying out the combustion process of the polystyrene model in a special combustion chamber, in different configurations. The pressures generated during thermal degradation vary depending on process parameters such as model density or the use of an additional adhesive binder. The results of laboratory tests may suggest what values of pressure are generated when filling in full-mold and lost foam technologies. The studies provide a prelude to further analysis of materials used for disposable foundry models and quantitative evaluation of their thermal degradation products for computer simulation.
Go to article

Bibliography

[1] Pacyniak, T. (2013). Full mold casting. Selected aspects. Lodz: A Series of Monographs, Lodz University of Technology. (in Polish)
[2] Pysz, S., Żółkiewicz, Z., Żuczek, R., Maniowski, Z., Sierant, Z., Młyński, M. (2010). Simulation studies of mould filling conditions with molten metal in evaporative pattern technology. The Transactions of the Foundry Research Institute. 10(3), 27-37.
[3] Shroyer, H.F. (1958). Cavityless Casting Mold and Method of Making Same. U.S. Patent No. 2,830, 343.
[4] Kaczorowski, R., Just, P. & Pacyniak, T. (2013), Test bench for analyzing the lost foam process. Archives of Foundry Engineering. 13(1), 57-62.
[5] Buczkowska, K., Just, P., Świniarska, J. & Pacyniak, T. (2015). The effect of the type, the ceramic coating thickness and the pattern set density on the degree of gas porosity in casting. Archives of Foundry Engineering. 15(2), 7-12.
[6] Żmudzińska, M., Faber, J., Perszewska, K., Żółkiewicz, Z., Maniowski, Z. (2011). Studying the emission of products formed during evaporation of polystyrene patterns in the lost foam process in terms of the work environment. The Transactions of the Foundry Research Institute. 50(1), 23-33.
[7] Żółkiewicz, Z., Baliński, A., Żółkiewicz M. (2017). Characteristics of the thermal process of polystyrene model gasification. The Transactions of the Foundry Research Institute. 17(3), 201 - 210.
[8] Mocek, J. & Chojecki, A. (2014). Gas atmosphere formed in casting by full mold process. Archives of Metallurgy and Materials. 59(3), 1045-1049.
[9] Żółkiewicz, Z. & Żółkiewicz, M. (2010). Characteristic properties of materials for evaporative patterns. Archives of Foundry Engineering. 10(spec. 3), 289-292.
[10] Pielichowski, J., Sobczak, J.J., Żółkiewicz, Z., Hebda, E., Karwiński, A. (2011). The thermal analysis of polystyrene foundry model. The Transactions of the Foundry Research Institute. 11(1), 15-21.
Go to article

Authors and Affiliations

M. Jureczko
1 2
Dariusz Bartocha
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Str. 44-100 Gliwice, Poland
  2. Joint Doctoral School, Silesian University of Technology, 2A Akademicka Str. 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of the casting method for the production of porous composites, called syntactic foams, of the casting alloy - solid particles type. This method was used to produce composites based on Al alloys reinforced with particles of clinoptilolite, a natural mineral from the zeolite group. Before the casting process, tests were carried out on the morphology, physicochemical properties and chemical composition of the zeolite, which was obtained from a rock called zeolite tuff, mined in a quarry in Kucin, (VSK PRO-ZEO s.r.o., Slovakia). Observations of the microstructure of the produced composites were also carried out using a scanning electron microscope. Diffractometric tests of zeolite rock as delivered for research and of the produced samples reinforced with zeolite particles were also carried out. Initial studies of the density and porosity of the produced composites were performed. The usefulness of the presented method of composite production was assessed on the basis of the conducted structural tests, with particular emphasis on the particle distribution in the alloy matrix.
Go to article

Bibliography

[1] Dyga, R. (2017). Metal foams as structural packing in the construction of process equipment. Technical Transactions Mechanics. 4, 165-178. DOI: 10.4467/2353737XCT.17.057.6368.
[2] Gupta, N. (2007). A functionally graded syntactic foam material for high energy absorption under compression. Materials Letters. 61(4-5), 979-982. https://doi.org/10.1016/j.matlet.2006.06.033.
[3] Taherishargh, M., Sulong, M.A., Belova, I.V. & Murch, G.E. (2015). On the particle size effect in expanded perlite aluminum syntactic foam. Materials and Design. 66(A), 294-303. https://doi.org/10.1016/j.matdes.2014.10.073.
[4] Borowiecka- Jamrozek, J., Depczyński, W. (2017). The effect of the addition of zeolite on the properties of a sintered copper-matrix composite. Metal 2017: 26rd international conference on metallurgy and materials (pp. 1652-1657).
[5] Gottardi, G. & Galli, E. (1985). Natural zeolites, mineral and rocks. Minerals. 18, 256-284. ISBN 3 540 13939 7.
[6] Nanbin, H., Dianyue, G., Bekkum, H. (2001). Introduction to zeolite science and practice. 2nd Completely revised and expanded edition, 137, (pp. 54-59).
[7] Gil, A. (1998). Analysis of the micropore structure of various microporous materials from nitrogen adsorption at 77 K. Adsorption, 4, 197-206.
[8] Jaroniec, M. & Choma, J. (1987). Characterization of activated carbons by distribution function of adsorption potential and micropore dimension. Materials Chemistry and Physics. 18(1-20, 103-117. https://doi.org/10.1016/0254-0584(87)90115-5.
[9] Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60(2), 309-319. https://doi.org/10.1021/ ja01269a023.
[10] Gregg, S.J., Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity. 2 Auglage. London: Academic Press.
[11] Kruk, M., Jaroniec, M. & Gadkaree, K.P. (1997). Nitrogen adsorption studies of novel synthetic active carbons. Journal of Colloid and Interface Science. 192(1), 250-256. DOI: 10.1006/jcis.1997.5009.
[12] Kruk, M., Jaroniec, M. & Sayari, A. (1997). Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir. 13(23), 6267-6273. https://doi.org/10.1021/la970776m.
[13] Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society. 73(1), 373-380. https://doi.org/10.1021/ja01145a126
Go to article

Authors and Affiliations

J.M. Borowiecka-Jamrozek
1
ORCID: ORCID
M. Kargul
1
ORCID: ORCID

  1. The Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The process of investment casting of AZ91 magnesium alloy open-cell porosity foams was analysed. A basic investment casting technique was modified to enable the manufacturing of magnesium foams of chosen porosities in a safe and effective way. Various casting parameters (mould temperature, metal pouring temperature, pressure during metal pouring and solidifying) were calculated and analysed to assure complete mould filling and to minimize surface reactions with mould material. The foams manufactured with this method have been tested for their mechanical strength and collapsing behaviour. The AZ91 foams acquired in this research turned out to have very high open porosity level (>80%) and performed with Young’s modulus of ~30 MPa on average. Their collapsing mechanism has turned out to be mostly brittle. Magnesium alloy foams of such morphology may find their application in fields requiring lightweight materials of high strength to density ratio or of high energy absorption properties, as well as in biomedical implants due to magnesium’s high biocompatibility and its mechanical properties similar to bone tissue.
Go to article

Bibliography

[1] Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal- ceramic composite foams. Archives of Foundry Engineering. 17(4), 47-50. DOI: 10.1515/afe-2017-0129.
[2] Bisht, A., Patel, V. K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds), Automotive Tribology. Energy, Environment, and Sustainability (pp. 51-63). Singapore: Springer. DOI: 10.1007/978-981-15-0434-1_4.
[3] Popielarski, P., Sika, R., Czarnecka-Komorowska, D., Szymański, P., Rogalewicz, M. & Gawdzińska, K. (2021). Evaluation of the cause and consequences of defects in cast metal-ceramic composite foams. Archives of Foundry Engineering. 21(1), 81-88. DOI: 10.24425/afe.2021.136082.
[4] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[5] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095, 1-14. DOI: 10.1016/J.CSITE.2021.101095.
[6] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by cellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/afe-2016-0090.
[7] Lehmann, H., Werzner, E., Malik, A., Abendroth, M., Ray, S. & Jung, B. (2022). Computer-aided design of metal melt filters: geometric modifications of open-cell foams, effective hydraulic properties and filtration performance. Advanced Engineering Materials. 24(2), 1-11. DOI: 10.1002/adem.202100878.
[8] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J. & Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[9] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27(2), 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[10] Anglani, A. & Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. Procedia CIRP. 99, 307-312. DOI: 10.1016/j.procir.2021.03.046.
[11] Anglani, A. & Pacella, M. (2018). Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP. 67, 504-509. DOI: 10.1016/J.PROCIR.2017.12.252.
[12] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K., & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[13] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Proceedings of the SPIE, 9802 (id.98021R), 8. DOI: 10.1117/12.2219470.
[14] Marx, J., & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials, 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[15] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.
[16] Kang, L., Shi, Y. & Luo, X. (2021). Effects of sodium chloride on structure and compressive properties of foamed AZ91 Effects of sodium chloride on structure and compressive properties of foamed AZ91. AIP Advances.11, 015118, 1-4. DOI: 10.1063/5.0033314.
[17] Pelczar, D., Długosz, P., Darłak, P., Nykiel, M., & Hebda, M. (2022). The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy. Archives of Metallurgy and Materials. 67(1), 147-154. DOI: https://doi.org/10.24425/amm.2022.137483.
[18] Gupta, M., Mui Ling Sharon, N. (2010). Magnesium, Magnesium Alloys, and Magnesium Composites. Hoboken: John Wiley & Sons, Ltd. DOI: 10.1002/9780470905098.
[19] Dong-hui, Y., Shang-run, Y., Hui, W., Ai-bin, M., Jing-hua, J., Jian-qing, C. & Ding-lie, W. (2010). Compressive properties of cellular Mg foams fabricated by melt-foaming method. Materials Science & Engineering A. 527(21-22), 5405-5409. DOI: 10.1016/j.msea.2010.05.017.
[20] Kroupová, I., Radkovský, F., Lichý, P. & Bednářová, V. (2015). Manufacturing of cast metal foams with irregular cell structure. Archives of Foundry Engineering. 15(2), 55-58. DOI: 10.1515/afe-2015-0038.
[21] Shih, T., Wang, J. & Chong, K. (2004). Combustion of magnesium alloys in air. Materials Chemistry and Physics. 85(2-3), 302-309. DOI: 10.1016/j.matchemphys.2004.01.036.
[22] Fujisawa, S., Yonezu, A. (2014). Mechanical property of microstructure in die-cast magnesium alloy evaluated by indentation testing at elevated temperature. Recent Advances in Structural Integrity Analysis: Proceedings of the International Congress (APCF/SIF-2014). Woodhead Publishing Limited. 422-426. DOI: 10.1533/9780081002254.422.
[23] Vyas, A.V. & Sutaria, M.P. (2020). Investigation on influence of the cast part thickness on interfacial mold–metal reactions during the investment casting of AZ91 magnesium alloy. International Journal of Metalcasting. 20(4), 139-144. DOI: 10.1007/s40962-020-00530-2.
[24] Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C. & Chakraborty, M. (2008). Fluidity of aluminum alloys and composites: A review. Journal of Alloys and Compounds. 456(1-2), 201-210. DOI: 10.1016/j.jallcom.2007.02.038.
[25] Voigt, R.C., Bertoletti, J., Kaley, A., Ricotta, S., Sunday, T. (2002). Fillability of thin-wall steel castings. Technical Report. https://doi.org/10.2172/801749.
[26] Dewhirst, B.A. (2008). Castability control in metal casting via fluidity measures: Application of error analysis to Variations in Fluidity Testing. Worcester Polytechnic Institute.
[27] Le, Q., Zhang, Z., Cui, J. & Chang, S. (2009). Study on the filtering purification of AZ91 magnesium alloy. Materials Science Forum. 610-613, 754-757. DOI: 10.4028/www.scientific.net/MSF.610-613.754.
[28] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.

Go to article

Authors and Affiliations

H. Kapłon
1
ORCID: ORCID
A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents investigation results of the effect of sand fluidization on the structure and mechanical properties of AlSi9 aluminum alloy. Castings were made by lost foam casting process with sand fluidization in mold at the stages of their solidification and cooling. Sand fluidization was achieved by blowing sand bed with compressed air in a foundry container. The metallographic study was carrying out on samples cut from different sections of the castings. Mechanical properties were determined on specimens made from cast samples. Microstructural analysis showed that sand fluidization increases the cooling rate, as a result, the main microstructural components of the alloy – SDAS, eutectic silicon and needles of the rich-iron phase – decrease. Moreover, in different sections of the casting structure is more uniform. With an increasing the air flow rate, a greater refinement of the structure is observed. Through the use of sand fluidization, the mechanical properties of LFC aluminum alloys increase to the level of gravity die castings.

Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the infuence of the bulk density ρz of granules, processing parameters and the density of ski inserts ρw made of expanded polystyrene (EPS) on their damping properties. For this aim liners for ski helmets with 3 different bulk densities were made. Sintering time and sintering pressure were also changed. The percentage damping factor η was determined on the basis of the results obtained in the rebound resilience test. Based on the analysis of the obtained data, it was found that increasing the density of EPS pads ρw increases their damping properties and at the same time contributes to a decrease in elasticity, increase in hardness and brittleness of EPS products.

Go to article

Authors and Affiliations

M. Trzaskalska
ORCID: ORCID
R. Chwastek

This page uses 'cookies'. Learn more