Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

There are mainly two different ways of producing sand cores in the industry. The most used is the shooting moulding process. A mixture of sand and binder is injected by compressed air into a cavity (core), where it is then thermally or chemically cured. Another relatively new method of manufacturing cores is the use of 3D printing. The principle is based on the method of local curing of the sand bed. The ability to destroy sand cores after casting can be evaluated by means of tests that are carried out directly on the test core. In most cases, the core is thermally degraded and the mechanical properties before and after thermal exposure are measured. Another possible way to determine the collapsibility of core mixtures can be performed on test castings, where a specific casting is designed for different binder systems. The residual strength is measured by subsequent shake-out or knock-out tests. In this paper, attention will be paid to the collapsibility of core mixtures in aluminium castings.
Go to article

Bibliography

[1] Dietert, H.W. (1950). Core knock-out, in Foundry Core Practice, 2nd ed. Chicago: American Foundrymen’s Society.
[2] Jorstad, J.L. (2008). Expendable-mold casting processes with permanent patterns, in ASM Handbook Vol. 15 Casting, 10th ed. ASM International
[3] Almaghariz, E.S., Conner, B.P., Lenner, L., Gullapalli, R., Manogharan, G.P. (2016). Quantifying the role of part design complexity in using 3D sand printing for molds and cores. International Journal of Metalcasting. 10, 240-252. DOI: 10.1007/s40962-016-0027-5.
[4] Vykoukal, M., Burian, A., Přerovská, M., Bajer, T., Beňo, J. (2019). Gas evolution of GEOPOL® W sand mixture and comparison with organic binders. Archives of Foundry Engineering. 19(2), 49-54.
[5] Steinhäuser, T. (2017). Inorganic binders-Benefits, State of the art, Actual use. In World Cast in Africa, Innovative for Sustainability, Proceedings of the South African Metal Casting Conference, Johannesburg, South Africa, 13–17 March 2017; WFO: Johannesburg, South Africa, p. 26
[6] Ramrattan, S. (2019). Evaluating a ceramic resin-coated sand for aluminum and iron castings. International Journal of Metalcasting. 13(3), 519-527. DOI: https://doi.org/10.1007/s40962-018-0269-5
[7] Ettemeyer, F., Schweinefuß, M., Lechner, P., Stahl, J., Greß, T., Kaindl, J., Durach, L., Volk, W. & Günther, D. (2021). Characterisation of the decoring behaviour of inorganically bound cast-in sand cores for light metal casting. Journal of Materials Processing Technology. 296, 117201, ISSN 0924-0136. DOI: https://doi.org/10.1016/j.jmatprotec.2021. 117201.
[8] Dobosz, P., Jelínek, K., Major-Gabryś, K. (2011). Development tendencies of moulding and core sands. China Foundry. 8, 438-446.

Go to article

Authors and Affiliations

T. Obzina
1
V. Merta
1
ORCID: ORCID
J. Rygel
1
P. Lichý
1
ORCID: ORCID
K. Drobíková
1

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The effects of filling the core box cavity and sand compaction in processes of core production by blowing methods (blowing, shooting)

depend on several main factors. The most important are: geometrical parameters of cavity and complexity of its shape, number,

distribution and shape of blowing holes feeding sands as well as the venting of a technological cavity. Values of individual parameters are

selected according to various criteria, but mostly they should be adjusted to properties of the applied core sand.

Various methods developed by several researchers, including the authors own attempts, allow to assess core sands properties on the basis

of special technological tests projecting the process into a laboratory scale. The developed criteria defining a degree or a filling ability

factor provide a better possibility of assessing the core sand behavior during flowing and core box filling, which indicate the value and

structure of the obtained compacting decisive – after hardening – for strength and permeability. The mentioned above aspects are analyzed

– on the basis of authors’ own examinations - in the hereby paper.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
M. Skrzyński
A. Burbelko
Download PDF Download RIS Download Bibtex

Abstract

Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process by blowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on the cores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.
Go to article

Authors and Affiliations

J. Danko
R. Dańko
M. Skrzyński
A. Burbelko
Download PDF Download RIS Download Bibtex

Abstract

Predicting the permeability of different regions of foundry cores and molds with complex geometries will help control the regional outgassing, enabling better defect prediction in castings. In this work, foundry cores prepared with different bulk properties were characterized using X-ray microtomography, and the obtained images were analyzed to study all relevant grain and pore parameters, including but not limited to the specific surface area, specific internal volume, and tortuosity. The obtained microstructural parameters were incorporated into prevalent models used to predict the fluid flow through porous media, and their accuracy is compared with respect to experimentally measured permeability. The original Kozeny model was identified as the most suitable model to predict the permeability of sand molds. Although the model predicts permeability well, the input parameters are laborious to measure. Hence, a methodology for replacing the pore diameter and tortuosity with simple process parameters is proposed. This modified version of the original Kozeny model helps predict permeability of foundry molds and cores at different regions resulting in better defect prediction and eventual scrap reduction.
Go to article

Bibliography

[1] Jorstad, J., Krusiak, M.B., Serra, J.O., La Fay, V. (2018). Aggregates and binders for expendable molds. Casting. 528-548. https://doi.org/10.31399/asm.hb.v15.a0005242.
[2] Campbell, J., Svidró, J.T. & Svidró, J. (2017). Molding and Casting Processes. In Doru M. Stefanescu (Eds.), Cast Iron Science and Technology (pp. 189-206). ASM International. https://doi.org/10.31399/asm.hb.v01a.a0006297.
[3] Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. & Günther, J. (2014). 3D printing of inorganic sand moulds for casting applications. Advanced Materials Research. 1018, 441-449. https://doi.org/10.4028/www.scientific.net/AMR.1018.441.
[4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73. https://doi.org/10.7494/ jcme.2017.1.3.70.
[5] Lannutti, J.J., Mobley, C.E. (2003). Improvements in Sand Mold/Core Technology: Effects on Casting Finish. Final Technical Report, The Ohio State University, Columbus, OH.
[6] Korotchenko, A.Y., Khilkov, D.E., Khilkova, A.A. & Tverskoy, M.V. (2020). Improving the quality of production of sand core on core shooting machines. Materials Science Forum. 989, 589-594. https://doi.org/10.4028/www.scientific.net/MSF.989.589.
[7] Winartomo, B., Vroomen, U., Bührig-Polaczek, A. & Pelzer, M. (2005). Multiphase modelling of core shooting process. International Journal of Cast Meterials Research. 18(1), 13-20. https://doi.org/10.1179/136404605225022811.
[8] Thorborg, J., Wendling, J., Klinkhammer, J., Heitzer, M. (2023). Modelling hot distortion of inorganic bonded sand cores and application on complex 3D printed automotive cores, IOP Conference Series: Materials Science and Engineering. 1281(1), 012069. https://doi.org/10.1088/1757-899x/1281/1/012069.
[9] Muskat, M. (1937). The flow of fluids through porous media, Journal of Applied Physics. 8(4), 274-282. https://doi.org/10.1063/1.1710292.
[10] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0.
[11] Marks, B., Sandnes, B., Dumazer, G., Eriksen, J.A. Måløy, K.J. (2015). Compaction of granular material inside confined geometries, Frontiers in Physics. 3, 1-9. https://doi.org/10.3389/fphy.2015.00041.
[12] Bargaoui, B., Azzouz, F., Thibault, D. & Cailletaud, G. (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of Materials Processing Technology. 246, 30-41. https://doi.org/10.1016/j.jmatprotec. 2017.03.002.
[13] Mitra, S., EL Mansori, M., Rodríguez de Castro, A. & Costin, M. (2020). Study of the evolution of transport properties induced by additive processing sand mold using X-ray computed tomography. Journal of Materials Processing Technology. 277 116495. https://doi.org/10.1016/ j.jmatprotec.2019.116495.
[14] Ettemeyer, F., Lechner, P., Hofmann, T., Andrä, H., Schneider, M., Grund, D., Volk, W. & Günther, D. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. Internatiol Journal of Solids Structures. 188-189, 155-168. https://doi.org/10.1016/j.ijsolstr.2019.09.014.
[15] Neithalath, N., Sumanasooriya, M.S. & Deo, O. (2010). Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization 61(8), 802-813. https://doi.org/10.1016/j.matchar.2010.05.004.
[16] Das, S., Stone, D., Convey, D. & Neithalath, N. (2014). Pore- and micro-structural characterization of a novel structural binder based on iron carbonation, Materials Characterization. 98, 168-179. https://doi.org/10.1016/j.matchar.2014.10.025.
[17] Landis, E.N. & Keane, D.T. (2010). X-ray microtomography. Materials Characterization. 61(12), 1305-1316. https://doi.org/10.1016/j.matchar.2010.09.012. [18] Scheidegger, A.E.. (1957). The physics of flow through porous media. University of Toronto press.
[19] H. Darcy. (1856). Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris.
[20] da Silva, M.T.Q.S., do Rocio Cardoso, M., Veronese, C.M.P. & Mazer, W. (2022). Tortuosity: A brief review. Materials Today: Proceedings. 58(4), 1344-1349. https://doi.org/10.1016/j.matpr.2022.02.228.
[21] Kadhim, F.S., Samsuri, A. & Kamal, A. (2013). A review in correlations between cementation factor and carbonate rocks properties. Life Science Journal. 10(4), 2451-2458.
[22] Nield, D.A., Bejan, A. (2012). Convection in porous media: Springer Fourth edition. https://doi.org/10.1007/978-1-4614-5541-7.
[23] Costa, A. (2006). Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters. 33(2), 1-5. https://doi.org/10.1029/2005GL025134.
[24] Slichter, C.S. (1899). Theoretical investigation of the motion of ground waters. Geological Survey (U.S.). Ground Water Branch.
[25] Leibenzon, L.S. (1947). Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede. In The Motion of Natural Liquids and Gases in a Porous Medium. Gostekhizdat, Moscow.
[26] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2021). On the relation between the gas-permeability and the pore characteristics of furan sand. Materials. 14(14), 3803, 1-14. https://doi.org/10.3390/ma14143803.
[27] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2022). A novel approach to quantifying the effect of the density of sand cores on their gas permeability. Joranl of Casting & Materials Engineering. 6(2), 33-38. https://doi.org/10.7494/jcme.2022.6.2.33.
[28] Costanza-Robinson, M.S. Estabrook, B.D. & Fouhey, D.F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Reserch. 47(7), 1-12. https://doi.org/10.1029/2010WR009655.
[29] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682. https://doi.org/10.1038/nmeth.2019.
[30] Grace, J.R., Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology. 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006.
[31] Vincent, L., Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence. 13(06), 583-598. https://doi.org/10.1109/34.87344.
[32] Domander, R. Felder, A.A., Doube, M., Schmidt, D. (2021). BoneJ2 - refactoring established research software. Wellcome Open Research. 6, 1–21.
[33] Dougherty, R., Kunzelmann, K.-H. (2007). Computing Local Thickness of 3D Structures with ImageJ. Microscopy Microanalysis. 13(S02), 1678-1679. https://doi.org/10.1017/ s1431927607074430.
[34] Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. (2010). Open Access SOFTWARE A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics. 11, 274, 1-7. http://www.biomedcentral.com /1471-2105/11/274.
[35] Nimmo, J.R. (2004). Porosity and Pore Size Distribution. In Hillel, D.(Eds.), Encyclopedia of Soils in the Environment. London, Elsevier,.
[36] Glover, P.W.J., Walker, E. (2009). Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics. 74(1), E17-E29. https://doi.org/10.1190/ 1.3033217.
[37] Graton, L.C. & Fraser, H.J. (1935). Systematic Packing of spheres: with particular relation to porosity and permeability. The Journal of Geology. 43(8), 1, 785-909. http://www.jstor.org/stable/30058420.
[38] Holzer, L., Marmet, P., Fingerle, M., Wiegmann, A., Neumann, M., Schmidt, V. (2023). Tortuosity and microstructure effects in porous media. Springer Cham. https://doi.org/10.1007/978-3-031-30477-4.
Go to article

Authors and Affiliations

D. Sundaram
1
ORCID: ORCID
T. Matsushita
1
ORCID: ORCID
I. Belov
1
A. Diószegi
1
ORCID: ORCID

  1. School of Engineering, Jönköping University, Sweden

This page uses 'cookies'. Learn more