Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results and provides an analyse of the geometric structure of Fe-Al protective coatings, gas-treated under specified GDS conditions. The analysis of the surface topography was conducted on the basis of the results obtained from the SEM data. Topographic images were converted to three-dimensional maps, scaling the registered amplitude coordinates of specific gray levels to the relative range of 0÷1. This allowed us to assess the degree of surface development by determining the fractal dimension. At the same time, the generated three-dimensional spectra of the autocorrelation function enabled the researchers to determine the autocorrelation length (Sal) and the degree of anisotropy (Str) of the surfaces, in accordance with ISO 25178. Furthermore, the reconstructed three-dimensional images of the topography allowed us to evaluate the functional properties o the studied surfaces based on the Abbott-Firestone curve (A-F), also known as the bearing area curve. The ordinate describing the height of the profile was replaced by the percentage of surface amplitude in this method, so in effect the shares of the height of the three-dimensional topographic map profiles of various load-bearing properties were determined. In this way, both the relative height of peaks, core and recesses as well as their percentages were subsequently established.

Go to article

Authors and Affiliations

T. Chrostek
K. Rychlik
M. Bramowicz
C. Senderowski
Download PDF Download RIS Download Bibtex

Abstract

Mg-1.6Gd binary alloy was subjected to uniaxial warm rolling at a unidirectional and cross-sectional with a reduction ratio of 95% in order to observe the relationship between its microstructural changes to the degradation behavior. The warm rolling was performed at a temperature range of its recrystallization temperature, which were 400°C and 560°C, and a feed rate of 10 mm/min. Degradation behaviors of Mg-1.6Gd binary alloy was evaluated by means of potentiodynamic polarization and hydrogen evolution test in modified Kokubo’s SBF solution at temperature of 37 ± 1ºC. The lowest corrosion rate of 0.126 mm/year derived from potentiodynamic polarization test was showed by unidirectional-rolled specimen at temperature of 560 °C. Hydrogen evolution test results showed the lowest hydrogen gas formed during 24 hours of immersion was found on unidirectional-rolled specimen at temperature of 560°C with a rate of 0.268 cc/cm2/hours. While cross rolled specimens showed a high corrosion and hydrogen evolution rate of 20 mm/year and 0.28 cc/cm2/hours.

Go to article

Authors and Affiliations

Ahmad Zakiyuddin
ORCID: ORCID
Arya Abietta Irawan
Oknovia Susanti
Sri Harjanto
Download PDF Download RIS Download Bibtex

Abstract

Gadolinium oxide (Gd2O3) is one of the lanthanide rare-earth oxides, which has been extensively studied due to its versatile functionalities, such as a high permittivity, reactivity with moisture, and ionic conductivity, etc. In this work, GdOx thin film was grown by atomic layer deposition using cyclopentadienyl (Cp)-based Gd precursor and water. As-grown GdOx film was amorphous and had a sub-stoichiometric (x ~ 1.2) composition with a uniform elemental depth profile. ~3 nm-thick GdOx thin film could modify the hydrophilic Si substrate into hydrophobic surface with water wetting angle of 70°. Wetting and electrical test revealed that the growth temperature affects the hydrophobicity and electrical strength of the as-grown GdOx film.
Go to article

Bibliography

[1] C. Wiemer, L. Lamagna, M. Fanciulli, Semiconductor Science and Technology 27, 074013 (2012).
[2] A. Karimaghaloo, J. Koo, H. sen Kang, S.A. Song, J.H. Shim, M.H. Lee, International Journal of Precision Engineering and Manufacturing - Green Technology 6, 611 (2019).
[3] G . Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi, Nature Materials 12, 315 (2013).
[4] I .K. Oh, K. Kim, Z. Lee, K.Y. Ko, C.W. Lee, S.J. Lee, J.M. Myung, C. Lansalot-Matras, W. Noh, C. Dussarrat, H. Kim, H.B.R. Lee, Chemistry of Materials 27, 148 (2015).
[5] M. Leskelä, K. Kukli, M. Ritala, Journal of Alloys and Compounds 418, 27 (2006).
[6] J.H. Han, A. Delabie, A. Franquet, T. Conard, S. van Elshocht, C. Adelmann, Chemical Vapor Deposition 21, 352 (2015).
[7] S. Govindarajan, T.S. Böscke, P. Sivasubramani, P.D. Kirsch, B.H. Lee, H.H. Tseng, R. Jammy, U. Schröder, S. Ramanathan, B.E. Gnade, Applied Physics Letters 91, 062906 (2007).
[8] H. Kim, H.J. Yun, B.J. Choi, RSC Advances 8, 42390 (2018).
[9] J.H. Shim, G.D. Han, H.J. Choi, Y. Kim, S. Xu, J. An, Y.B. Kim, T. Graf, T.D. Schladt, T.M. Gür, F.B. Prinz, International Journal of Precision Engineering and Manufacturing - Green Technology 6, 629 (2019).
[10] K. Xu, R. Ranjith, A. Laha, H. Parala, A.P. Milanov, R.A. Fischer, E. Bugiel, J. Feydt, S. Irsen, T. Toader, C. Bock, D. Rogalla, H.J. Osten, U. Kunze, A. Devi, Chemistry of Materials 24, 651 (2012).
[11] C. Adelmann, H. Tielens, D. Dewulf, A. Hardy, D. Pierreux, J. Swerts, E. Rosseel, X. Shi, M.K. van Bael, J.A. Kittl, S. van Elshocht, Journal of The Electrochemical Society 157, G105 (2010).
[12] D. Kim, D. Ha Kim, D.H. Riu, B.J. Choi, Archives of Metallurgy and Materials 63, 1061 (2018).
[13] M. Mishra, P. Kuppusami, S. Ramya, V. Ganesan, A. Singh, R. Thirumurugesan, E. Mohandas, Surface and Coatings Technology 262, 56 (2015).
[14] N.K. Sahoo, M. Senthilkumar, S. Thakur, D. Bhattacharyya, Applied Surface Science 200, 219 (2002).
Go to article

Authors and Affiliations

Sung Yeon Ryu
1
Hee Ju Yun
1
Min Hwan Lee
2
Byung Joon Choi
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul 01811, Korea
  2. University of California Merced, Department of Mechanical Engineering, Merced, California, USA
Download PDF Download RIS Download Bibtex

Abstract

Geometrical tolerances as tricky measurands are indicated. Crucial differences between the ISO and ASME geometrical tolerancing standards are discussed. It is demonstrated that, in many cases, both systems have different default rules. Moreover, for some identical graphical indications, interpretations are different. On the other hand, the standards contain similar arrangements in many cases. It is underlined that nowadays, due to the progressing globalisation, it is necessary to know these standards, bearing in mind that suppliers or customers specify requirements according to provisions from particular standards implemented in their companies. The above justifies the need for research exploring differences and similarities in both systems of standards. It is shown that the ISO GPS system standards, due to default independency principle, prefer to set production as cheaply as possible, while ASME, due to default provisions ( e.g. Rule #1, simultaneous requirement) puts stress on controlling product geometry more strictly, which is sometimes unnecessary.
Go to article

Authors and Affiliations

Zbigniew Humienny
1
Paweł Zdrojewski
2

  1. Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Machine Design Fundamentals, Narbutta 84, 02-524 Warsaw, Poland
  2. Łukasiewicz Research Network – Institute of Aviation, Aleja Krakowska 110/114, 02-256 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The thermal expansion of a ZrO2-20 mol% Gd2O3 pellet has been systematically investigated using a thermo-mechanical analyzer in the temperature range of 293-1773 K. Variations in the thermal expansion coefficient and density upon temperature change were calculated using the thermal expansion data. The average linear thermal expansion coefficient of the ZrO2-20 mol% Gd2O3 pellet was found to be 9.522 × 10–6 K–1 in the range of 298-1073 K. This value is smaller than that of ZrO2 and larger than that of Gd2O3. Further, with an increase in temperature to 1773 K, the density of ZrO2-20 mol% Gd2O3 pellet was found to decrease to 94.98 % of the initial density at 293 K.
Go to article

Authors and Affiliations

Kweonho Kang
1
ORCID: ORCID
Seok-Min Hong
1
ORCID: ORCID
Changhwa Lee
1
ORCID: ORCID
Yongjun Cho
1
ORCID: ORCID

  1. Korea Atomic Energy Research Institute, Daejeon, Republic of Korea

This page uses 'cookies'. Learn more