Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The applications of the machine learning and programming approaches in cartography has been increasing in recent years. This paper presents a case study of the scripting techniques used for cartographic mapping using Generic Mapping Tools (GMT) and R language (raster and tmaps packages). The aim of the study is environmental mapping of Ghana. The materials include high-resolution raster grids: topography by the General Bathymetric Chart of the Oceans (GEBCO), climate and environmental datasets (TerraClimate) and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for geomorphometric analysis (slope, aspect, hillshade and elevations). The methodology includes code snippets commented and explained with details of scripts. It is argued that using consolebased scripting tools for mapping is effective for cartographic workflow due to the logical structure and repeatability of scripts. The results include eight new thematic maps of Ghana performed using scripting approach inGMTscripting toolset and R language for quantitative and qualitative environmental assessment. Maps show correlations between the landforms of Ghana and certain environmental variables (drought index and soil moisture) showing the effects of the topographic relief on the distribution of the continuous geographic fields. These varied in several geographically distinct regions of Ghana: Ashanti (Kumasi), Volta, Savannah, coastal and northern regions. Demonstrated maps show that scripting method works effectively on a wide range of geosciences including environmental, topographic and climate studies. In such a way, this paper contributes both to the regional studies of Ghana and development of cartographic techniques.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Université Libre de Bruxelles, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns GMT application for studies of the geophysical and geomorphological settings of the Weddell Sea. Its western part is occupied by the back-arc basin developed during geologic evolution of the Antarctic. The mapping presents geophysical settings reflecting tectonic formation of the region, glaciomarine sediment distribution and the bathymetry. The GlobSed grid highlighted the abnormally large thickness of sedimentary strata resulted from the long lasting sedimentation and great subsidence ratio. The sediment thickness indicated significant influx (>13,000m) in the southern segment. Values of 6,000–7,000 m along the peninsula indicate stability of the sediments influx. The northern end of the Filchner Trough shows increased sediment supply. The topography shows variability -7,160–4,763 m. The ridges in the northern segment and gravity anomalies (>75 mGal) show parallel lines stretching NW-SE (10°–45°W, 60°–67°S) which points at the effects of regional topography. The basin is dominated by the slightly negative gravity >-30 mGal. The geoid model shows a SW-NE trend with the lowest values <18 m in the south, the highest values >20m in the NE and along the Coats Land. The ripples in the north follow the geometry of the submarine ridges and channels proving correlation with topography and gravitational equipotential surface.
Go to article

Bibliography

1. Aleshkova, N. D., Golynsky, A. V, Kurinin, R.G., Mandrikov, V.S., 1997. Gravity Mapping in the Southern Weddell Sea Region. (Explanatory note for free-air and Bouguer anomalies maps). Polarforschung, 67 (3), 163–177.
2. Anderson, J.B., 1972a. The Marine Geology of the Weddell Sea. Florida State University Sedimentological Research Laboratory, Publication Number 35, Florida State University, Tallahassee, p. 222.
3. Anderson, J.B., 1972b. Nearshore glacial-marine deposition from modern sediments of the Weddell Sea. Nature 240, 189–192.
4. Anderson, J.B., Andrews, B.A., Bartek, L.R., Truswell, E.M., 1991. Petrology and palynology of glacial sediments: implications for subglacial geology of the eastern Weddell Sea, Antarctica. In: Thomson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Cambridge University Press, Cambridge (UK), 231–235.
5. Barker, P.F., Dalziel, I.W.D., Storey, B.C., 1991. Tectonic evolution of the Scotia Arc region. In: Tingey, R.J. (Ed.), Antarctic Geology. Oxford University Press, 215–248.
6. Bart, P.J., DeBatist, M., Jokat, W., 1999. Interglacial collapse off Crary Trough Mouth Fan, Weddell Sea, Antarctica: implications for Antarctic glacial history. Journal of Sedimentary Research 69, 1276–1289.
7. Bell, R.E., Brozena, J.M., Haxby, W.F., Labrecque, J.L., 1990. Continental Margins of the Western Weddell Sea: Insights from Airborne Gravity and Geosat‐Derived Gravity. Contributions to Antarctic Research I, 50, doi: 10.1029/AR050p0091.
8. Bentley, M.J., Anderson, J.B., 1998. Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science 10, 309–325.
9. Bentley, M., Fogwill, C., Le Brocq, A., Hubbard, A., Sugden, D., Dunai, T., Freeman, S., 2010. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change. Geology 38, 411–414.
10. Bentley, M.J., Hein, A., Sugden, D.E., Whitehouse, P., Vieli, A., Hindmarsh, R.C.A., 2012. Post-glacial thinning history of the Foundation Ice Stream, Weddell Sea embayment, Antarctica. In: Abstract C51C-0787 Presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 December 2012.
11. Bentley, M.J., Hein, A.S., Sugden, D.E., Whitehouse, P.L., Shanks, R., Xu, S., Freeman, S.P.H.T., 2017. Deglacial history of the Pensacola mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quaternary Science Reviews 158, 58–76.
12. Bradley, S.L., Hindmarsh, R.C.A., Whitehouse, P.L., Bentley, M.J., King, M.A., 2015. Low post-glacial rebound rates in the Weddell Sea due to late Holocene ice-sheet readvance. Earth and Planetary Science Letters 413, 79–89.
13. Carsey, F.D., 1980. Microwave observation of the Weddell Polynya. Monthly Weather Review 108, 2032–2044.
14. Clark, P.U., 2011. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change: comment. Geology 39, 239, doi: 10.1130/G31533C.1.
15. Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J., Barbat, M.M., 2018. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography 149, 10–24.
16. Crawford, K., Kuhn, G., Hambrey, M.J., 1996. Changes in the character of glaciomarine sedimentation in the southwestern Weddell Sea, Antarctica: evidence from the core PS1423-2. Annals of Glaciology 22, 200–204.
17. Cunningham, W.D., Dalziel, I.W.D., Lee, T.-Y., Lawver, L.A., 1995. Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research 100, 8257–8266.
18. Curtis, M.L., Storey, B.C. 1996. A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution. Geological Society, London, Special Publications 108, 11–30, doi: 10.1144/ GSL.SP.1996.108.01.02.
19. DeConto, R., Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597.
20. Eagles, G., Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 28–50.
21. Elverhøi, A., 1981. Evidence for a late Wisconsin glaciation of the Weddell Sea. Nature 293, 641–642.
22. Elverhøi, A., Roaldset, E., 1983. Glaciomarine sediments and suspended particulate matter, Weddell Sea shelf, Antarctica. Polar Research 1, 1–21.
23. Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., Wisotzki, A., 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research 53, 515–538.
24. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393.
25. Gales, J., Leat, P., Larter, R., Kuhn, G., Hillenbrand, C.D., Graham, A., Mitchell, N., Tate, A., Buys, G., Jokat, W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology 348, 73–87.
26. Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
27. GEBCO Compilation Group, 2020. GEBCO 2020 Grid, doi: 10.5285/ a29c5465-b138-234d-e053-6c86abc040b9.
28. GDAL/OGR contributors, 2020. GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.
29. Grobe, H., Huybrechts, P., Fütterer, D.K., 1993. Late Quaternary record of sea-level changes in the Antarctic. Geologische Rundschau 82, 263–275, doi: 10.1007/BF00191832.
30. Grikurov, G.E., Ivanov, V.L., Traube, V.V., Leitchenkov G.L., Aleshkova, N.D., Golynsky, A.V., Kurinin, R.G., 1991. Structure and evolution of sedimentary basins in the Weddell province. Abstract 6th International Symposium Antarctic Earth Sciences, Tokyo, 185–190.
31. Haase, G.M., 1986. Glaciomarine sediments along the Filchner/Ronne Ice Shelf. southern Weddell Sea e first results of the 1983/84 ANTARKTIS- II/4 expedition. Marine Geology 72, 241–258.
32. Haid, V., Timmermann, R., 2013. Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research 118, 2640–2652.
33. Haugland, K., Kristoffersen, Y., Velde, A., 1985. Seismic investigations in the Weddell Sea embayment. Tectonophysics 114 (1–4), 1–21.
34. Haugland, K., 1982. Seismic reconnaissance survey in the Weddell Sea. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison (U.S.A.), 405–413.
35. Hegland, M., Vermeulen, M., Todd, C., Balco, G., Huybers, K., Campbell, S., Conway, H., Simmons, C., 2012. Glacial geomorphology of the Pensacola mountains, Weddell Sea sector, Antarctica. In: Abstracts of the WAIS Workshop 2012, 21.
36. Hein, A.S., Marrero, S.M., Woodward, J., Dunning, S.A., Winter, K., Westoby, M.J., Freeman, S.P.H.T., Shanks, R.P., Sugden, D.E., 2016. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nature Communications 7, 12511, doi: 10.1038/ncomms12511.
37. Hein, A.S., Fogwill, C.J., Sugden, D.E., Xu, S., 2011. Glacial/Interglacial ice-stream stability in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 307, 211–221.
38. Hillenbrand, C.-D., Melles, M., Kuhn, G., Larter, R.D., 2012. Marine geological constraints for the grounding-line position of the Antarctic Ice Sheet on the southern Weddell Sea shelf at the Last Glacial Maximum. Quaternary Science Reviews 32, 25–47.
39. Hillenbrand, C.-D., Bentley, M.J., Stolldorf, T.D., Hein, A.S., Kuhn, G., Graham, A.G.C., Fogwill, C.J., Kristoffersen, Y., Smith, J.A., Anderson, J.B., Larter, R.D., Melles, M., Hodgson, D.A., Mulvaney, R., Sugden D.E., 2014. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews 100, 111–136.
40. Huang, X., Gohl, K. Jokat, W., 2014. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change 118, 25–41.
41. Huang, X., Jokat, W., 2016. Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change 139, 211–225.
42. Johnson, J.S., Nichols, K.A., Goehring, B.M., Balco, G., Schaefer, J.M., 2019. Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth and Planetary Science Letters 518, 127–135.
43. Jokat, W., Fechner, N., Studinger, M., 1997. Geodynamic models of the Weddell Sea embayment in view of new geophysical data. In: Ricchi, C.A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antarctica Publication, Siena (Italy), 453– 459.
44. Kerr, R., Dotto, T.S., Mata, M.M., Hellmer, H.H., 2018. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes. Deep Sea Research Part II: Topical Studies in Oceanography 149, 70–83.
45. King, E.C., Bell, A.C., 1996. New seismic data from the Ronne Ice Shelf, Antarctica. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea tectonics and Gondwana break-up. London, Geological Society of London, 213–226. (Geological Society special publication, 108), doi: 10.1144/GSL.SP.1996.108.01.16.
46. Kjellsson, J., Holland, P.R., Marshall, G.J., Mathiot, P., Aksenov, Y., Coward, A.C., Bacon, S., Megann, A.P., Ridley, J., 2015. Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modelling 94, 141–152.
47. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences 5 (1), 28–42.
48. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90.
49. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
50. König, M., Jokat, W., 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research Solid Earth (1978–2012), 111 (B12).
51. Kristoffersen, Y., Hinz, K., 1991. Evolution of the Gondwana plate boundary in the Weddell Sea area. In: Thomson, M.R. A., Crame, J.A., Thomson, J.W. (Eds), Geological evolution of Antarctica. Cambridge University Press, Cambridge, 225–223.
52. Kuhn, G., Weber, M., 1993. Acoustical characterization of sediments by Parasound and 3.5 kHz systems: related sedimentary processes on the southeastern Weddell Sea continental slope, Antarctica. Marine Geology 113, 201–217.
53. Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (Ed.), Expeditions programm Nr. 75 ANT XXIII/4, AWI, doi: 10.13140/RG.2.2.11468.87687.
54. Larter, R.D., Graham, A.G.C., Hillenbrand, C.-D., Smith, J.A., Gales, J.A., 2012. Late Quaternary grounded ice extent in the Filchner Trough, Weddell Sea, Antarctica: new marine geophysical evidence. Quaternary Science Reviews 53, 111–122.
55. Lemenkova, P., 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 158 pp., doi: 10.13140/RG.2.2.16945.22881.
56. Lemenkova, P., 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
57. Lemenkova, P., 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45 (2), 57–84.
58. Lemenkova, P., 2019b. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
59. Lemenkova, P., 2019c. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
60. Lemenkova, P., 2019d. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
61. Lemenkova, P., 2019e. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14 (2), 39–48.
62. Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
63. Lemenkova, P., 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60.
64. Lemenkova, P., 2020b. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74 (1), 19–39.
65. Lemenkova, P., 2020c. Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute 25, 129–138.
66. Lemenkova, P., 2020d. R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering 13 (1), 5–12.
67. Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (Eds), Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285, doi: 10.6084/m9.figshare.7434230.
68. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp R.H., Olson, T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861.
69. Lindeque, A., Martin, Y., Gohl, K., Maldonado, A., 2013. Deep sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Marine Geology 336, 61–83.
70. Livermore, R.A., Woollett, R.W., 1993. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth and Planetary Science Letters 117, (3–4), 475–495.
71. Livermore, R.A., Hunter, R., 1996. Mesozoic seafloor spreading in the southern Weddell Sea. In: Storey, B., King, E., Livermore, R. (Eds.), Weddell Sea Tectonics and Gondwana Breakup. Geological Society, London, Special Publications 108, 227–241.
72. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-Zaldívar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., Rodríguez- Fernández, J., Somoza, L., Vázquez, J.T., 2005. Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Global and Planetary Change 45 (1), 99–129.
73. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-ZaldÍvar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., RodrÍguez-Fernández, J., Somoza, L., Suriñach, E., Vázquez, J.T., 2006. Seismic Stratigraphy of Miocene to Recent Sedimentary Deposits in the Central Scotia Sea and Northern Weddell Sea: Influence of Bottom Flows (Antarctica). In: Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds), Antarctica. Springer, Berlin, Heidelberg, 441–446, doi: 10.1007/3-540-32934- X_56.
74. Michels, K.H., Rogenhagen, J., Kuhn, G., 2001. Recognition of contour- current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Marine Geophysical Research 22, 465–485.
75. Mueller, R.D., Timmermann, R., 2017. Weddell Sea Circulation. Journal of Atmospheric and Solar-Terrestrial Physics 161, 105–117.
76. Nankivell, A.P., 1997. Tectonic Evolution of the Southern Ocean Between Antarctica, South America and Africa Over the Last 84 Ma. Ph.D. thesis University of Oxford, Oxford, UK.
77. Nicholls, K.W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E., 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Reviews of Geophysics 47, RG3003, doi: 10.1029/2007RG000250.
78. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406, doi: 10.1029/2011JB008916.
79. Paxman, G.J.G., Jamieson, S.S.R., Hochmuth, K., Gohl, K., Bentleya, M.J., Leitchenkov, G., Ferracciolif, F., 2019. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 535. 109346, doi: 10.1016/j.palaeo.2019.109346.
80. Riley, T.R., Jordan, T.A., Leat, P.T., Curtis, M.L., Millar, I.L., 2020. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research 79, 185–196, doi: 10.1016/j. gr.2019.09.014.
81. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason- 1 reveals buried tectonic structure. Science 346 (6205), 65–67.
82. Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D.D., Damiani, T.M., Young, D., Cochran, J.R., Richter, T.D., 2016. New Antarctic gravity anomaly grid forenhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters 43 (2), doi: 10.1002/2015GL067439.
83. Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
84. Siegert, M., Ross, N., Corr, H., Kingslake, J., Hindmarsh, R., 2013. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quaternary Science Reviews 78, 98–107.
85. Smith, W.H.F., 1993. On the accuracy of digital bathymetric data. Journal of Geophysical Research 98, B6, 9591–9603.
86. Snyder, J.P., 1987. Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395. Washington, DC: U.S. Government Printing Office, 124–137.
87. Snyder, J.P., 1993. Flattening the Earth: Two Thousand Years of Map Projections. ISBN 0-226-76747-7.
88. Storey, B.C., Dalziel, I.W.D., Garrett, S.W., Grunow, A.M., Pankhurst, R.J., Vennum, W.R., 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. In: Scotese, C.R., Sager, W.W. (Eds), 8th Geodynamics Symposium, Mesozoic and Cenozoic Plate Reconstructions. Elsevier, 381–390. (Tectonophysics, 155, 1–4).
89. Storey, B.C., Vaughan, A.P.M., Millar I.L., 1996. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea Tectonics and Gondwana Break-up. Geological Society Special Publication, London, 108, 87–103.
90. Stolldorf, T., Schenke, H.-W., Anderson, J.B., 2012. LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quaternary Science Reviews 48, 20–31.
91. Stow, D.A.V., Faugères, J.C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.C., Viana, A.R. (Eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series. Memoir. Geological Society of London, London, 7–20.
92. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R., 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20 (4), 1756– 1772.
93. Suetova, I.A., Ushakova, L.A., Lemenkova P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
94. Tingey, R.J., 1991. The regional geology of Archean and Proterozoic rocks in Antarctica. In: Tingey, RJ. (Ed.), The Geology of Antarctica, Clarendon Press, Oxford, 1–58.
95. Uenzelmann-Neben, G., 2006. Depositional patterns at Drift 7, Antarctic Peninsula: along-slope versus down-slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology 233, 49–62.
96. Weber, M.E., Bonani, G., Fütterer, K.D., 1994. Sedimentation processes within channel ridge systems, southern Weddell Sea, Antarctica. Palaeoceanography 9, 1027–1048.
97. Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. Eos Transactions of the American Geophysical Union 72 (41), 441.
98. Wessel, P., Smith, W.H.F., 1995. New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union 76 (33), 329.
99. Wessel, P., Smith, W.H.F., 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research 101, 8741-8743.
100. Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F., 2013. Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union 94 (45), 409–410.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Bolshaya Gruzinskaya Str. 10, Bld. 1, Moscow, 123995, Russian Federation;
Download PDF Download RIS Download Bibtex

Abstract

The South Sandwich Trench located eastward of the Drake Passage in the Scotia Sea between Antarctica and South America is one of the least studied deep-sea trenches. Its geomorphological formation and present shape formed under the strong influence of the tectonic plate movements and various aspects of the geological setting, i.e., sediment thickness, faults, fracture zones and geologic lineaments. The aim of this paper is to link the geological and geophysical setting of the Scotia Sea with individual geomorphological features of the South Sandwich Trench in the context of the phenomena of its formation and evolution. Linking several datasets (GEBCO, ETOPO1, EGM96, GlobSed and marine freeair gravity raster grids, geological vector layers) highlights correlations between various factors affecting deep-sea trench formation and development, using the Generic Mapping Tools (GMT) for cartographic mapping. The paper contributes to the regional studies of the submarine geomorphology in the Antarctic region with a technical application of the GMT cartographic scripting toolset.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. Bolshaya Gruzinskaya St, 10, Bld. 1, Moscow, 123995, Russian Federation

This page uses 'cookies'. Learn more