Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The gas-tungsten arc (GTA) welding behaviors of a magnesium matrix composite reinforced with SiC particles were examined in terms of

microstructure characteristics and process efficiencies. This study focused on the effects of the GTAW process parameters (like welding

current in the range of 100/200 A) on the size of the fusion zone (FZ). The analyses revealed the strong influence of the GTA welding

process on the width and depth of the fusion zone and also on the refinement of the microstructure in the fusion zone. Additionally, the

results of dendrite arm size (DAS) measurements were presented.

Go to article

Authors and Affiliations

E. Przełożyńska
M. Mróz
K.N. Braszczyńska-Malik
Download PDF Download RIS Download Bibtex

Abstract

Welding of AISI H13 tool steel which is mainly used in mold making is difficult due to the some alloying elements and it high hardenability. The effect filler metal composition on the microstructural changes, phase evolutions, and hardness during gas tungsten arc welding of AISI H13 hot work tool steel was investigated. Corrosion resistance of each weld was studied. For this purpose, four filler metals i.e. ER 312, ER NiCrMo-3, ER 80S, and 18Ni maraging steel were supplied. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of weldments. It was found the ER 80S weld showed the highest hardness owing to fully martensitic microstructure. The hardness in ER 312 and ER NiCrMo3 weld metals was noticeably lower than that of the other weld metals in which the microstructures mainly consisted of austenite phase. The results showed that the corrosion rate of ER 312 weld metal was lower than that other weld metals which is due to the high chromium content in this weld metal. The corrosion rate of ER NiCrMo-3 was lower than that of 18Ni maraging weld. The obtained results from EIS tests confirm the findings of potentiodynamic polarization tests.
Go to article

Bibliography

[1] B. Uddeholm, Bohler-Uddeholm H13 tool steel, 2013.
[2] J . Wang, Z. Xu, and X. Lu, J. Mater. Eng. Perform. 29 (3), 1849- 1859 (2020).
[3] G .A. Roberts, R. Kennedy, G. Krauss, Tool steels, 1998 ASM international.
[4] S. Jhavar, C.P. Paul, N.K. Jain, Eng. Fail. Anal. 34, 519-535 (2013).
[5] R .A. Meaquita, C.A. Barbosa, Proceedings of Machining, 2004 Sao Paulo.
[6] R .A. Mesquita, R. Schneider, Exacta. 8 (3), 307-318 (2010).
[7] W.T. Preciado, C.E.N. Bohorquez, Mater. Process. Technol. 179 (1-3), 244-250 (2006).
[8] A. Skumavc, J. Tušek, M. Mulc, D. Klobčar, Metalurgija. 53 (4), 517-520 (2014).
[9] J . Chen, S.-H. Wang, L. Xue, Mater. Sci. 47 (2), 779-792 (2012).
[10] A. Košnik, J. Tušek, L. Kosec, T. Muhič, Metalurgija. 50 (4), 231-234 (2011).
[11] S. Thompson, Handbook of mould: Tool and die repair welding, 1999 Elsevier.
[12] T. Branza, A. Duchosal, G. Fras, F. Deschaux-Beaume, P. Lours, Mater. Process.
[13] P. Peças, E. Henriques, B. Pereira, M. Lino, M. Silva, Build Futur. Innov. (2006).
[14] L.E.E. Jae-Ho, J. Jeong-Hwan, J.O.O. Byeong-Don, Y.I.M. Hong- Sup, M. Young-Hoon, Trans. Nonferrous Met. Soc. China. 19, 284-287 (2009).
[15] S.U.N. Yahong, S. Hanaki, H. Uchida, H. Sunada, N. Tsujii, Mater. Sci. Technol. 19, 91-93 (2009).
[16] R .H.G. e Silva, L.E. dos Santos Paes, C. Marques, K.C. Riffel, M.B. Schwedersky, J. Brazilian Soc. Mech. Sci. Eng. 41 (1), 38 (2019).
[17] K . Somlo, G. Sziebig, Ifac-papersonline. 52 (22), 101-107 (2019). [18] J .-L. Desir, Eng. Fail. Anal. 8 (5), 423-437 (2001).
[19] J .C. Lippold, Welding metallurgy and weldability, 2015 Wiley Online Library.
[20] J .R. Davis, Corrosion of weldments, 2006 ASM international.
[21] R .G. Buchheit Jr, J.P. Moran, G.E. Stoner, Corrosion. 46 (8), 610- 617 (1990).
[22] K .A. Chiang, Y.C. Chen, Mater. Lett. 59 (14-15), 1919-1923 (2005).
[23] C.F.G. Baxter, J. Irwin, R. Francis, The Third International Offshore and Polar Engineering Conference, 1993.
[24] M . Liljas, Glas. Scotland, Keynote Pap. V. 2, 13-16 (1994).
[25] J . Lippol, J.K. Damian, Welding metallurgy and weldability of stainless steels, 2005 John Wiley & Sons, New York.
[26] J .C. Lippold, S.D. Kiser, J.N. DuPont, Welding metallurgy and weldability of nickel-base alloys, 2011 John Wiley & Sons.
[27] R .M. Rasouli I, Metall. Eng. 21 (1), 54-71 (2018). [28] S. Kou, Welding metallurgy, 2003 John Wiley & Sons, New Jersey.
[29] M . Stern, A.L. Geary, Electrochem. Soc. 104 (1), 56-63 (1957).
[30] Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, X. Ren, Surf. Coatings Technol. 204 (24), 3947-3953 (2010).
[31] E .E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, 2000 ASM international.
[32] M . Yeganeh, M. Saremi, Prog. Org. Coatings. 79, 25-30 (2015).
[33] P. Langford, J. Broomfield, Constr. Repair. 1 (2), (1987).
[34] A. Aguilar, A.A. Sagüés, R.G. Powers, Corrosion Rates of Steel in Concrete, 1990 ASTM International.
Go to article

Authors and Affiliations

Sadegh Varmaziar
1
ORCID: ORCID
Hossein Mostaan
1
ORCID: ORCID
Mahdi Rafiei
2
ORCID: ORCID
Mahdi Yeganeh
3
ORCID: ORCID

  1. Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
  2. Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  3. Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

This page uses 'cookies'. Learn more