Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of gas pressure on the shape and size of the AZ91 alloy powder produced by using the gas atomization method was investigated experimentally. Experiments were carried out at 820°C constant temperature in 2-mm nozzle diameter and by applying 4 different gas pressures (0.5, 1.5, 2.5 and 3.5 MPa). Argon gas was used to atomize the melt. Scanning electron microscope (SEM) to determine the shape of produced AZ91 powders, XRD, XRF and SEM-EDX analysis to determine the phases forming in the internal structures of the produced powders and the percentages of these phases and a laser measuring device for powder size analysis were used. Hardness tests were carried out to determine the mechanical properties of the produced powders. The general appearances of AZ91 alloy powders produced had general appearances of ligament, acicular, droplet, flake and spherical shape, but depending on the increase in gas pressure, the shape of the powders is seen to change mostly towards flake and spherical. It is determined that the finest powder was obtained at 820°C with 2 mm nozzle diameter at 3.5 MPa gas pressure and the powders had complex shapes in general.

Go to article

Authors and Affiliations

M. Akkaş
T. Çetin
M. Boz
Download PDF Download RIS Download Bibtex

Abstract

With the recent advancement in technology for titanium metal powder injection molding and additive manufacturing, high yield and good flowability powder production is needed. In this study, titanium powder was produced through vacuum induction melting gas atomization with a cold crucible, which can yield various alloy compositions without the need for material pretreatment. The gas behavior in the injection section was simulated according to the orifice protrusion length for effective powder production, and powder was prepared based on the simulation results. The gas distribution changes with the orifice protrusion length, which changes the location of the recirculation zone and production yield of the powder. The produced powders had a spherical morphology, and the content of impurities (N, O) changed with the injected-gas purity.

Go to article

Authors and Affiliations

Dae-Kyeom Kim
Young Il Kim
Hwaseon Lee
Young Do Kim
ORCID: ORCID
Dongju Lee
Bin Lee
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, precisely controlled large scale gas atomization process was applied to produce spherical and uniform shaped high entropy alloy powder. The gas atomization process was carried out to fabricate CoCrFeNiMn alloy, which was studied for high ductility and mechanical properties at low temperatures. It was confirmed that the mass scale, single phase, equiatomic, and high purity spherical high entropy alloy powder was produced by gas atomization process. The powder was sintered by spark plasma sintering process with various sintering conditions, and mechanical properties were characterized. Through this research, we have developed a mass production process of high quality and spherical high entropy alloy powder, and it is expected to expand applications of this high entropy alloy into fields such as powder injection molding and 3D printing for complex shaped components.
Go to article

Authors and Affiliations

Tae Gyu Park
Sang Hyun Lee
Bin Lee
Hye Mi Cho
Won Jung Choi
Bum Sung Kim
Kwang Seon Shin
Taek-Soo Kim
Download PDF Download RIS Download Bibtex

Abstract

Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2Fe14B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2Fe14B phase tend to align to c-axis.

Go to article

Authors and Affiliations

Ju-Young Cho
Sardar Farhat Abbas
Yong-Ho Choa
Taek-Soo Kim
Download PDF Download RIS Download Bibtex

Abstract

Electrode induction melting gas atomization (EIGA) is a newly developed method for preparing ultra-clean metal powders, and is a completely crucible-free melting and atomization process. Based on conducted several atomization experiments, we found that the fine powder yields obtained during the EIGA process were greatly affected by the status of metal melt flow. While, continuous metal melt flow was beneficial for the yield of fine powders, it was in conflict with the principle described for the vacuum induction melting inert gas atomization (VIGA) process. To understand the critical role of continuous metal melt flow in the EIGA process, a computational fluid dynamics (CFD) approach was developed to simulate the gas atomization process. The D50 particle size of powder prepared by atomization under continuous liquid metal flow was about 70 μm, while that obtained by atomization under non-continuous liquid metal flow was about 100 μm. The diameter distribution results of numerical simulations agreed well with the experimental measurements, which demonstrated the accuracy of our simulation method. This study provides theoretical support for understanding the critical role of continuous metal melt flow and improving fine powder yields in the EIGA process. PACS: 02.60.Cb; 43.28.Py; 41.20.Gz; 81.20.Ev
Go to article

Authors and Affiliations

Jialun Wu
1
ORCID: ORCID
Min Xia
1
ORCID: ORCID
Junfeng Wang
1
ORCID: ORCID
Changchun Ge
1
ORCID: ORCID

  1. University of Science & Technology Beijing, Institute of Powder Metallurgy and Advanced Ceramics, Beijing 100083, China
Download PDF Download RIS Download Bibtex

Abstract

To form the fine micro-structures, the Pr17Fe78B5 magnet powders were produced in the optimized gas atomization conditions and it was investigated that the formation of the textures, microstructures, and the changes in the magnetic properties with increasing the deformation temperatures and rolling directions. Due to the rapid cooling system than the casting process, the homogenous microstructures were composed of the Pr-rich and Pr2Fe14B without any oxides and α-Fe and enables grain refinement. The pore ratios were 2.87, 1.42, and 0.22% at the deformation temperatures of 600, 700, 800°C, respectively in the rolled samples to align the c-axis which is the magnetic easy axis. Because Pr-rich phase cannot flow into the pore with a liquid state at low temperature, the improvement of pore densification was gradually observed with increasing deformation temperature. To confirm the magnetic decoupling effects of Pr2Fe14B phases by Pr-rich phases, the magnetic properties were investigated in rolled samples produced at the deformation temperature of 800°C. Although the remanent field is slightly decreased by 30%, the coercivity fields increased by about 2 times than that previous casted ingot. It is suggested that the gas atomization method can be suitable for fabricating grain refined and pure PrFeB magnets, and the plastic deformation conditions and rolling directions are a critical role to manipulate microstructure and magnetic properties.
Go to article

Bibliography

[1] S.G. Yoon, Transfer, Super Strong Permanent Magnets, 1, UUP, Ulsan (1999).
[2] J.G. Lee, J.H. Yu, Ceramist 17 (3), 50-60 (2014).
[3] H .Y. Yasuda, M. Kumano, T. Nagase, R. Kato, H. Shimizu, Scripta Mater. 65 (8), 743-746 (2011).
[4] J.Y. Cho, S.F. Abbas, Y.H. Choa, T.S. Kim, Arch. Metall. Mater. 64 (2), 623-626 (2019).
[5] J.Y. Cho, Y.H. Choa, S. W. Nam, R. M. Zarar ,T. S. Kim, Arch. Metall. Mater. 65 (4), 1293-1296 (2020).
[6] J.H. Lee, J.Y. Cho, S.W. Nam, S.F. Abbas, K.M. Lim, T.S. Kim, Sci. Adv. Mater. 9 (10), 1859-1862 (2017).
[7] K . Akioka, O. Kobayashi, T. Yamagami, A. Arai, T. Shimoda, J. Appl. Phys. 69, 5829-5831 (1991).
[8] A.G. Popov, D.V. Gunderov, T.Z. Puzanova, G.I. Raab, Phys. Met. Metall. 103 (1), 51-57 (2007).
[9] M. Ferrante, E. Freitas, V. Sinka, Mater. Sci. Technol. 15, 501-509 (1999).
[10] H .W. Kwon, P. Bowen, I.R. Harris, J. Alloys Compd. 189, 131-137 (1992).
[11] N. Cifitci, N. Ellendt, G. Coulthard, E.S. Barreto, L. Madler, V. Uhlenwinkel, Metall. Mater. Trans. B 50, 666-677 (2019).
[12] N. Takahashi, H. Nakamura, C.R. Paik, S. Sugimoto, M. Okada, M. Homma, Mater. Trans. 32 (1), 90-92 (1991).
[13] Y. Luo, N. Zhang, proc. 10th Int. Workshop on Rare Earth Magnets and Their Application, Kyoto, 275 (1989).
Go to article

Authors and Affiliations

Ju-Young Cho
1 2
ORCID: ORCID
Myung-Suk Song
1
ORCID: ORCID
Yong-Ho Choa
2
ORCID: ORCID
Taek-Soo Kim
1 3
ORCID: ORCID

  1. Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, 156 Gaetbeol-ro (Songdo-dong), Yeonsu-Gu, Incheon 21999, Korea
  2. Hanyang University, Department of Material Science and Chemical Engineering, Ansan 15588, Korea
  3. University of Science and Technology, Critical Materials and Semi-Conductor Packaging Engineering, Daejeon 3413, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

NdFeB anisotropic sintered permanent magnets are typically fabricated by strip casting or melt spinning. In this study, the plastic deformability of an NdFeB alloy was investigated to study the possibility of fabricating anisotropic sintered magnets using gas atomized powders. The results show that the stoichiometric composition Nd12Fe82B6 softens at high temperatures. The aspect ratio and orientation factor of Nd12Fe82B6 billets after plastic deformation were found to increase with increasing plastic deformation temperature, particularly above 800℃. This confirms that softening at high temperatures can lead to plastic deformation of Nd2Fe14B hard magnetic phases.

Go to article

Authors and Affiliations

Ju-Young Cho
ORCID: ORCID
Yong-Ho Choa
ORCID: ORCID
Sun-Woo Nam
ORCID: ORCID
Rasheed Mohammad Zarar
Taek-Soo Kim
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Due to air pollution, global warming and energy shortage demands new clean energy conversion technologies. The conversion of industrial waste heat into useful electricity using thermoelectric (TE) technology is a promising method in recent decades. Still, its applications are limited by the low efficiency of TE materials in the operating range between 400-600 K. In this work, we have fabricated Cu0.005Bi0.5Sb1.495Te3 powder using a single step gas atomization process followed by spark plasma sintering at different temperatures (623, 673, 723, and 773 K), and their thermoelectric properties were investigated. The variation of sintering temperature showed a significant impact on the grain size. The Seebeck coefficient values at room temperature increased significantly from 127 μVK to 151 μV/K with increasing sintering temperature from 623 K to 723 K due to decreased carrier concentration. The maximum ZT values for the four samples were similar in the range between 1.15 to 1.18 at 450 K, which suggest these materials could be used for power generation in the mid-temperature range (400-600 K).

Go to article

Authors and Affiliations

Chul-Hee Lee
Peyala Dharmaiah
Jun-Woo Song
Kwang-Yong Jeong
Soon-Jik Hong
Download PDF Download RIS Download Bibtex

Abstract

Molybdenum (Mo) is used to form a barrier layer for metal wiring in displays or semiconductor devices. Recently, researches have been continuously attempted to fabricate Mo sputtering targets through additive manufacturing. In this study, spherical Mo powders with an average particle size of about 37 um were manufactured by electrode induction melting gas atomization. Subsequently, Mo layer with a thickness of 0.25 mm was formed by direct energy deposition in which the scan speed was set as a variable. According to the change of the scan speed, pores or cracks were found in the Mo deposition layer. Mo layer deposited with scan speed of 600 mm/min has the hardness value of 324 Hv with a porosity of approximately 2%. We demonstrated that Mo layers with higher relative density and hardness can be formed with less effort through direct energy deposition compared to the conventional powder metallurgy.
Go to article

Bibliography

[1] A. Mancaleoni, A. Sitta, Al. Colombo, R. Villa, G. Mirone, M. Renna, M. Calabretta, Copper wire bonding process characterization and simulation, 11th International Conference on Integrated Power Electronics Systems, Berlin, Germany, VDE Verlag GmbH (2020).
[2] G.H. Oh, S. Kim, T. Kim, J. Alloys Compd., (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.157901 (in press).
[3] T.K. Chee, K.S. Theen, T.M. Sin, Cu-Cu wire bonding challenges on MOSFET wafer technology, 15th Electronics Packaging Technology Conference, Singapore, Singapore, VDE Verlag GmbH (2013).
[4] K . Mukai, T. Magaya, L. Brandt, Z. Liu, H. Fu, S. Hunegnaw, Adhesive enabling technology for directly plating copper onto glass, 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, IEEE (2014).
[5] B. He, J. Petzing, P. Webb, R. Leach, Opt. Lasers Eng. 75, 39-47 (2015).
[6] A.R.M. Yusoff, M.N. Syahrul, K. Henkel, Bull. Mater. Sci. 30, 329-331 (2007).
[7] L. Guo, W.Y. Zhang, Z.N. Xin, C.S. Yao, Int. J. Refract. Met. Hard Mater. 78, 45-50 (2019).
[8] X. Gao, L. Li, J. Liu, X. Wang, H. Yu, Int. J. Refract. Met. Hard Mater. 88, 105186 (2020).
[9] P. Alén, M. Ritala, K. Arstila, J. Keinonen, M. Leskelä, J. Electrochem. Soc. 152, G361 (2005).
[10] W. Li, X. Yan, A.G. Aberle, S. Venkataraj, Int. J. Photoenergy 2016, 1-10 (2016).
[11] P.S. Suryavanshi, C.J. Panchal, A.L. Patel, Mater. Today: Proc., (2020). DOI: https://doi.org/10.1016/j.matpr.2020.07.706 (in press).
[12] C. Wongwanitwatta1, M. Horprathum, C. Chananonnawathorn, AIP Conf. Proc. 2279, 120007 (2020).
[13] G. An, J. Sun, Y. Sun, W. Cao, Mater. Sci. Forum 913, 853-861 (2018).
[14] B. Bax, R. Rajput, R. Kellet, M. Reisacher, Addit. Manuf. 21, 487-494 (2018).
[15] D.R. Feenstra, A. Molotnikov, N. Birbilis, Mater. Des. 198, 109342 (2021).
[16] R. Ohser-Wiedemann, U. Martin, H. J. Seifert, A, Müller, Int. J. Refract. Met. Hard Mater. 28 (4), 550-557 (2010)
Go to article

Authors and Affiliations

Goo-Won Roh
1 2
ORCID: ORCID
Eun-Soo Park
2
ORCID: ORCID
Jaeyun Moon
3
ORCID: ORCID
Hojun Lee
4
ORCID: ORCID
Jongmin Byun
4
ORCID: ORCID

  1. University, Department of Materials Science and Engineering, Seoul 04763, Republic of Korea
  2. Research and Development Center, Eloi Materials Lab (EML) Co. Ltd., Suwon 16229, Republic of Korea
  3. University of Nevada, Department of Mechanical Engineering, Las Vegas, 4505 S. Maryland PKWY Las Vegas, NV 89154, United States
  4. Seoul National University of Science and Technology, Department of Materials Science and Engineering Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This research describes effects of Si addition on microstructure and mechanical properties of the Al-Cr based alloys prepared manufactured using gas atomization and SPS (Spark Plasma Sintering) processes. The Al-Cr-Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). Microstructure of the as-atomized Al-Cr-Si alloys with high contents of Cr and Si was composed multi-phases with hard and thermally stable such as Al13Cr4Si4, AlCrSi, Al8Cr5 and Cr3Si intermetallic compounds. The average hardness values were 703 Hv for S5, 698 Hv for S10 and 824 Hv for S20 alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with hard and thermally stable and fine microstructure by the addition of high Cr and Si using rapid solidification and SPS process.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Ik-Hyun Oh
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Hyun-Kuk Park
ORCID: ORCID
Jung-Han Lee
Hyeon-Taek Son
ORCID: ORCID

This page uses 'cookies'. Learn more