Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Combining two different surveying methods – ground-penetrating radars and magnetometry – using the Amplitude Data Comparison method (ADCM) offers archeologists a new, cutting-edge tool to unravel the mysteries of the past.
Go to article

Authors and Affiliations

Fabian Welc
1

  1. Institute of Archaeology, Cardinal Stefan Wyszyński University in Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The article presents the possibility of using geophysical surveys to assess the stability of Carpathian slopes built of flysch deposits susceptible to mass movements. Landslide slopes located in the coastal zone of artificial water reservoirs are particularly susceptible to the loss of stability due to the erosion of this zone and the changing water level in the reservoir. Geophysical surveys of landslides carried out as a part of the research programs: PR-7 carried out by IMGW in 1972–1980 and SOPO carried out by PGI in 2009–2016 made it possible to develop a methodology of geophysical surveys enabling the determination of the geometry (course of the slip surface and range levels) of the existing landslides, information necessary to carry out a computational analysis of their stability. Examples of geometry of landslides in the coastal zone of the Czorsztyn reservoir and landslides in the area of hydrotechnical drifts of the Swinna-Poreba dam were presented. The possibility of a quantitative evaluation of the stability of the Carpathian slopes was also proposed on the basis of the SMR ( Slope Mass Rating) proposed by M. Romana, using the KFG ( Klasyfikacja Fliszu-Geofizyczna) geophysical classification equivalent to the RMR ( Rock Mass Rating) classification by Z.T. Bieniawski for the assessment of the massif. A dozen or so active landslides were compiled for which the stability was determined using the SMR method.
Go to article

Authors and Affiliations

Zbigniew Bestyński
1
ORCID: ORCID
Edmund Sieinski
1
Piotr Śliwiński
1
ORCID: ORCID

  1. Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy w Warszawie
Download PDF Download RIS Download Bibtex

Abstract

On the ground of results obtained by the seismoacoustic profiling carried out in 1985 and primary examination of core samples the following main seismoacoustic units are distinguished and characterized: unit A — bedrock, unit B — till and/or compacted glaciomarine deposit, unit C — glaciomarine ice-front deposit, unit D — glaciomarine mud. These results enabled to present the distribution of seismoacoustic units along the fiord and its extension on the shelf, as well as to determine a relation of bottom structures to Late Vistulian(?) deglaciation and the action of Holocene tributary glaciers, probably during the Little Ice Age. The position of marginal structures corresponding to local retreat stages of the glacier front is also presented.

Go to article

Authors and Affiliations

Włodzimierz Kowalewski
Stanisław Rudowski
S. Maciej Zalewski
Download PDF Download RIS Download Bibtex

Abstract

Research on permafrost in the Abisko area of northern Sweden date from the 1950s. A mean annual air temperature of −3°C in the Abisko mountains (i.e. 1000 m a.s.l.) and −1°C beyond the mountain area at an altitude of around 400m suggests that both moun− tain and arctic permafrost occur there. Several geophysical surveys were performed by means of resistivity tomography (ERT) and electromagnetic mapping (EM). Wherever pos− sible the geophysical survey results were calibrated by digging tests pits. The results show that permafrost occurs extensively in the mountain areas, especially those above 900m a.s.l. and also sporadically at lower altitudes. At 400 m a.s.l. permafrost may be up to 30 m thick. Its thickness and extent are determined largely by the very variable local rock and soil con− ditions. Fossil permafrost is also likely to occur in this area.

Go to article

Authors and Affiliations

Wojciech Dobiński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the results of gravimetric and magnetic investigations carried out on the Hans Glacier (Hansbreen) in the area of the Hornsund Fiord in Spitsbergen. These pilot investigations were performed in profiles running across to the extension of the glacier. Analysis of the magnetic measurements permits the supposition that in the base of the glacier there are amphibolites assigned to the Skålfjellet series, one of the oldest links of the metamorphic complex in Spitsbergen. Fig. 3 shows the behaviour of the amphibolites determined from the qualitative and quantitative properties of the anomalies ΔT. This paper also determined the thickness of the glacier in a cross-section 1.5 km distant from its front. From interpretation of the gravity anomaly, thickness varies between several and more than 100 m, taking the highest values in the central part of the glacier.

Go to article

Authors and Affiliations

Andrzej Koblański
Stanisław Małoszewski
Janusz Śliz
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of investigations of bottom sediments in Hornsund, Wijdefjorden and Isfjorden as well as of the shelf around the Bjornoya. carried out in 1982—1985 by a continuous seismic profiling. Geophysic structures and bottom sediments on the bedrock to a depth of 170 ms have been recognized, particularly in the Hornsund region. The following seismoacoustic units have been distinguished: unit A — bedrock, unit В — till and/or compacted glaciogenic deposit, unit С — glaciomarine ice-front deposit, unit D — glaciomarine mud. These results allowed to present a model of glaciomarine sedimentation in a fiord, fed by warm tidewater glaciers.

Go to article

Authors and Affiliations

Włodzimierz Kowalewski
Stanisław Rudowski
S. Maciej Zalewski
Krystyna Żakowicz
Download PDF Download RIS Download Bibtex

Abstract

The applications of the machine learning and programming approaches in cartography has been increasing in recent years. This paper presents a case study of the scripting techniques used for cartographic mapping using Generic Mapping Tools (GMT) and R language (raster and tmaps packages). The aim of the study is environmental mapping of Ghana. The materials include high-resolution raster grids: topography by the General Bathymetric Chart of the Oceans (GEBCO), climate and environmental datasets (TerraClimate) and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for geomorphometric analysis (slope, aspect, hillshade and elevations). The methodology includes code snippets commented and explained with details of scripts. It is argued that using consolebased scripting tools for mapping is effective for cartographic workflow due to the logical structure and repeatability of scripts. The results include eight new thematic maps of Ghana performed using scripting approach inGMTscripting toolset and R language for quantitative and qualitative environmental assessment. Maps show correlations between the landforms of Ghana and certain environmental variables (drought index and soil moisture) showing the effects of the topographic relief on the distribution of the continuous geographic fields. These varied in several geographically distinct regions of Ghana: Ashanti (Kumasi), Volta, Savannah, coastal and northern regions. Demonstrated maps show that scripting method works effectively on a wide range of geosciences including environmental, topographic and climate studies. In such a way, this paper contributes both to the regional studies of Ghana and development of cartographic techniques.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Université Libre de Bruxelles, Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The ground-penetrating radar (GPR) method has been used for many years in archaeological research. However, this method is still not widely used in studies of past architecture. The biggest problem with the implementation of the GPR method at such sites is usually connected with extensive debris layers, plant cover and standing relics of walls and other features that restrict the available measurement area. Despite of these, properly performed GPR surveys, even on a small area, can yield significant information concerning underground architectural relicts. Moreover, the results of GPR profiling integrated with historical and archeological data allow for three-dimensional reconstruction of the examined architectural monuments and in the next step, they track architectural transformations. Relics of the Romanesque St. Peter monastery, located in the northern part of the Island of Rab, is a good example of the successful GPR survey. Results of the performed geophysical reconnaissance in conjunction with the query of archival materials made it possible to visualize a spatial (3D) appearance of three main phases of the site architectural development, despite a very limited area available for geophysical survey. According to the authors, such a comprehensive approach should be a standard in contemporary geophysical research focused on relics of the past architecture.
Go to article

Authors and Affiliations

Fabian Welc
1
Ana Konestra
2
ORCID: ORCID

  1. Cardinal Stefan Wyszyński University, Institute of Archaeology, Wóycickiego 1/3, bud. 23, 01-938 Warsaw, Poland
  2. Institute of Archaeology, Jurjevska ulica 15, 10000 Zagreb, Croatia
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns GMT application for studies of the geophysical and geomorphological settings of the Weddell Sea. Its western part is occupied by the back-arc basin developed during geologic evolution of the Antarctic. The mapping presents geophysical settings reflecting tectonic formation of the region, glaciomarine sediment distribution and the bathymetry. The GlobSed grid highlighted the abnormally large thickness of sedimentary strata resulted from the long lasting sedimentation and great subsidence ratio. The sediment thickness indicated significant influx (>13,000m) in the southern segment. Values of 6,000–7,000 m along the peninsula indicate stability of the sediments influx. The northern end of the Filchner Trough shows increased sediment supply. The topography shows variability -7,160–4,763 m. The ridges in the northern segment and gravity anomalies (>75 mGal) show parallel lines stretching NW-SE (10°–45°W, 60°–67°S) which points at the effects of regional topography. The basin is dominated by the slightly negative gravity >-30 mGal. The geoid model shows a SW-NE trend with the lowest values <18 m in the south, the highest values >20m in the NE and along the Coats Land. The ripples in the north follow the geometry of the submarine ridges and channels proving correlation with topography and gravitational equipotential surface.
Go to article

Bibliography

1. Aleshkova, N. D., Golynsky, A. V, Kurinin, R.G., Mandrikov, V.S., 1997. Gravity Mapping in the Southern Weddell Sea Region. (Explanatory note for free-air and Bouguer anomalies maps). Polarforschung, 67 (3), 163–177.
2. Anderson, J.B., 1972a. The Marine Geology of the Weddell Sea. Florida State University Sedimentological Research Laboratory, Publication Number 35, Florida State University, Tallahassee, p. 222.
3. Anderson, J.B., 1972b. Nearshore glacial-marine deposition from modern sediments of the Weddell Sea. Nature 240, 189–192.
4. Anderson, J.B., Andrews, B.A., Bartek, L.R., Truswell, E.M., 1991. Petrology and palynology of glacial sediments: implications for subglacial geology of the eastern Weddell Sea, Antarctica. In: Thomson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Cambridge University Press, Cambridge (UK), 231–235.
5. Barker, P.F., Dalziel, I.W.D., Storey, B.C., 1991. Tectonic evolution of the Scotia Arc region. In: Tingey, R.J. (Ed.), Antarctic Geology. Oxford University Press, 215–248.
6. Bart, P.J., DeBatist, M., Jokat, W., 1999. Interglacial collapse off Crary Trough Mouth Fan, Weddell Sea, Antarctica: implications for Antarctic glacial history. Journal of Sedimentary Research 69, 1276–1289.
7. Bell, R.E., Brozena, J.M., Haxby, W.F., Labrecque, J.L., 1990. Continental Margins of the Western Weddell Sea: Insights from Airborne Gravity and Geosat‐Derived Gravity. Contributions to Antarctic Research I, 50, doi: 10.1029/AR050p0091.
8. Bentley, M.J., Anderson, J.B., 1998. Glacial and marine geological evidence for the ice sheet configuration in the Weddell Sea Antarctic Peninsula region during the Last Glacial Maximum. Antarctic Science 10, 309–325.
9. Bentley, M., Fogwill, C., Le Brocq, A., Hubbard, A., Sugden, D., Dunai, T., Freeman, S., 2010. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change. Geology 38, 411–414.
10. Bentley, M.J., Hein, A., Sugden, D.E., Whitehouse, P., Vieli, A., Hindmarsh, R.C.A., 2012. Post-glacial thinning history of the Foundation Ice Stream, Weddell Sea embayment, Antarctica. In: Abstract C51C-0787 Presented at 2012 Fall Meeting, AGU, San Francisco, California, 3–7 December 2012.
11. Bentley, M.J., Hein, A.S., Sugden, D.E., Whitehouse, P.L., Shanks, R., Xu, S., Freeman, S.P.H.T., 2017. Deglacial history of the Pensacola mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quaternary Science Reviews 158, 58–76.
12. Bradley, S.L., Hindmarsh, R.C.A., Whitehouse, P.L., Bentley, M.J., King, M.A., 2015. Low post-glacial rebound rates in the Weddell Sea due to late Holocene ice-sheet readvance. Earth and Planetary Science Letters 413, 79–89.
13. Carsey, F.D., 1980. Microwave observation of the Weddell Polynya. Monthly Weather Review 108, 2032–2044.
14. Clark, P.U., 2011. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea Embayment: constraints on past ice volume change: comment. Geology 39, 239, doi: 10.1130/G31533C.1.
15. Collares, L.L., Mata, M.M., Kerr, R., Arigony-Neto, J., Barbat, M.M., 2018. Iceberg drift and ocean circulation in the northwestern Weddell Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography 149, 10–24.
16. Crawford, K., Kuhn, G., Hambrey, M.J., 1996. Changes in the character of glaciomarine sedimentation in the southwestern Weddell Sea, Antarctica: evidence from the core PS1423-2. Annals of Glaciology 22, 200–204.
17. Cunningham, W.D., Dalziel, I.W.D., Lee, T.-Y., Lawver, L.A., 1995. Southernmost South America-Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research 100, 8257–8266.
18. Curtis, M.L., Storey, B.C. 1996. A review of geological constraints on the pre-break-up position of the Ellsworth Mountains within Gondwana: implications for Weddell Sea evolution. Geological Society, London, Special Publications 108, 11–30, doi: 10.1144/ GSL.SP.1996.108.01.02.
19. DeConto, R., Pollard, D., 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597.
20. Eagles, G., Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 28–50.
21. Elverhøi, A., 1981. Evidence for a late Wisconsin glaciation of the Weddell Sea. Nature 293, 641–642.
22. Elverhøi, A., Roaldset, E., 1983. Glaciomarine sediments and suspended particulate matter, Weddell Sea shelf, Antarctica. Polar Research 1, 1–21.
23. Fahrbach, E., Rohardt, G., Scheele, N., Schröder, M., Strass, V., Wisotzki, A., 1995. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. Journal of Marine Research 53, 515–538.
24. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., et al., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393.
25. Gales, J., Leat, P., Larter, R., Kuhn, G., Hillenbrand, C.D., Graham, A., Mitchell, N., Tate, A., Buys, G., Jokat, W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology 348, 73–87.
26. Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
27. GEBCO Compilation Group, 2020. GEBCO 2020 Grid, doi: 10.5285/ a29c5465-b138-234d-e053-6c86abc040b9.
28. GDAL/OGR contributors, 2020. GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.
29. Grobe, H., Huybrechts, P., Fütterer, D.K., 1993. Late Quaternary record of sea-level changes in the Antarctic. Geologische Rundschau 82, 263–275, doi: 10.1007/BF00191832.
30. Grikurov, G.E., Ivanov, V.L., Traube, V.V., Leitchenkov G.L., Aleshkova, N.D., Golynsky, A.V., Kurinin, R.G., 1991. Structure and evolution of sedimentary basins in the Weddell province. Abstract 6th International Symposium Antarctic Earth Sciences, Tokyo, 185–190.
31. Haase, G.M., 1986. Glaciomarine sediments along the Filchner/Ronne Ice Shelf. southern Weddell Sea e first results of the 1983/84 ANTARKTIS- II/4 expedition. Marine Geology 72, 241–258.
32. Haid, V., Timmermann, R., 2013. Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research 118, 2640–2652.
33. Haugland, K., Kristoffersen, Y., Velde, A., 1985. Seismic investigations in the Weddell Sea embayment. Tectonophysics 114 (1–4), 1–21.
34. Haugland, K., 1982. Seismic reconnaissance survey in the Weddell Sea. In: Craddock, C. (Ed.), Antarctic Geoscience. University of Wisconsin Press, Madison (U.S.A.), 405–413.
35. Hegland, M., Vermeulen, M., Todd, C., Balco, G., Huybers, K., Campbell, S., Conway, H., Simmons, C., 2012. Glacial geomorphology of the Pensacola mountains, Weddell Sea sector, Antarctica. In: Abstracts of the WAIS Workshop 2012, 21.
36. Hein, A.S., Marrero, S.M., Woodward, J., Dunning, S.A., Winter, K., Westoby, M.J., Freeman, S.P.H.T., Shanks, R.P., Sugden, D.E., 2016. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nature Communications 7, 12511, doi: 10.1038/ncomms12511.
37. Hein, A.S., Fogwill, C.J., Sugden, D.E., Xu, S., 2011. Glacial/Interglacial ice-stream stability in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 307, 211–221.
38. Hillenbrand, C.-D., Melles, M., Kuhn, G., Larter, R.D., 2012. Marine geological constraints for the grounding-line position of the Antarctic Ice Sheet on the southern Weddell Sea shelf at the Last Glacial Maximum. Quaternary Science Reviews 32, 25–47.
39. Hillenbrand, C.-D., Bentley, M.J., Stolldorf, T.D., Hein, A.S., Kuhn, G., Graham, A.G.C., Fogwill, C.J., Kristoffersen, Y., Smith, J.A., Anderson, J.B., Larter, R.D., Melles, M., Hodgson, D.A., Mulvaney, R., Sugden D.E., 2014. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quaternary Science Reviews 100, 111–136.
40. Huang, X., Gohl, K. Jokat, W., 2014. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change 118, 25–41.
41. Huang, X., Jokat, W., 2016. Middle Miocene to present sediment transport and deposits in the Southeastern Weddell Sea, Antarctica. Global and Planetary Change 139, 211–225.
42. Johnson, J.S., Nichols, K.A., Goehring, B.M., Balco, G., Schaefer, J.M., 2019. Abrupt mid-Holocene ice loss in the western Weddell Sea Embayment of Antarctica. Earth and Planetary Science Letters 518, 127–135.
43. Jokat, W., Fechner, N., Studinger, M., 1997. Geodynamic models of the Weddell Sea embayment in view of new geophysical data. In: Ricchi, C.A. (Ed.), The Antarctic Region: Geological Evolution and Processes. Terra Antarctica Publication, Siena (Italy), 453– 459.
44. Kerr, R., Dotto, T.S., Mata, M.M., Hellmer, H.H., 2018. Three decades of deep water mass investigation in the Weddell Sea (1984–2014): Temporal variability and changes. Deep Sea Research Part II: Topical Studies in Oceanography 149, 70–83.
45. King, E.C., Bell, A.C., 1996. New seismic data from the Ronne Ice Shelf, Antarctica. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea tectonics and Gondwana break-up. London, Geological Society of London, 213–226. (Geological Society special publication, 108), doi: 10.1144/GSL.SP.1996.108.01.16.
46. Kjellsson, J., Holland, P.R., Marshall, G.J., Mathiot, P., Aksenov, Y., Coward, A.C., Bacon, S., Megann, A.P., Ridley, J., 2015. Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Modelling 94, 141–152.
47. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences 5 (1), 28–42.
48. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. Ecology and Environmental Protection. Proceedings of the International Conference. March 19–20, 2014. Minsk, Belarus, 85–90.
49. Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
50. König, M., Jokat, W., 2006. The Mesozoic breakup of the Weddell Sea. Journal of Geophysical Research Solid Earth (1978–2012), 111 (B12).
51. Kristoffersen, Y., Hinz, K., 1991. Evolution of the Gondwana plate boundary in the Weddell Sea area. In: Thomson, M.R. A., Crame, J.A., Thomson, J.W. (Eds), Geological evolution of Antarctica. Cambridge University Press, Cambridge, 225–223.
52. Kuhn, G., Weber, M., 1993. Acoustical characterization of sediments by Parasound and 3.5 kHz systems: related sedimentary processes on the southeastern Weddell Sea continental slope, Antarctica. Marine Geology 113, 201–217.
53. Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (Ed.), Expeditions programm Nr. 75 ANT XXIII/4, AWI, doi: 10.13140/RG.2.2.11468.87687.
54. Larter, R.D., Graham, A.G.C., Hillenbrand, C.-D., Smith, J.A., Gales, J.A., 2012. Late Quaternary grounded ice extent in the Filchner Trough, Weddell Sea, Antarctica: new marine geophysical evidence. Quaternary Science Reviews 53, 111–122.
55. Lemenkova, P., 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. M.Sc. Thesis. Netherlands: University of Twente, 158 pp., doi: 10.13140/RG.2.2.16945.22881.
56. Lemenkova, P., 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
57. Lemenkova, P., 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45 (2), 57–84.
58. Lemenkova, P., 2019b. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
59. Lemenkova, P., 2019c. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
60. Lemenkova, P., 2019d. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
61. Lemenkova, P., 2019e. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14 (2), 39–48.
62. Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
63. Lemenkova, P., 2020a. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60.
64. Lemenkova, P., 2020b. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List 74 (1), 19–39.
65. Lemenkova, P., 2020c. Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Scientific Annals of the Danube Delta Institute 25, 129–138.
66. Lemenkova, P., 2020d. R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal of Electronic and Computer Engineering 13 (1), 5–12.
67. Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A.K., Leroueil, S. (Eds), Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285, doi: 10.6084/m9.figshare.7434230.
68. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp R.H., Olson, T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-1998-206861.
69. Lindeque, A., Martin, Y., Gohl, K., Maldonado, A., 2013. Deep sea pre-glacial to glacial sedimentation in the Weddell Sea and southern Scotia Sea from a cross-basin seismic transect. Marine Geology 336, 61–83.
70. Livermore, R.A., Woollett, R.W., 1993. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth and Planetary Science Letters 117, (3–4), 475–495.
71. Livermore, R.A., Hunter, R., 1996. Mesozoic seafloor spreading in the southern Weddell Sea. In: Storey, B., King, E., Livermore, R. (Eds.), Weddell Sea Tectonics and Gondwana Breakup. Geological Society, London, Special Publications 108, 227–241.
72. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-Zaldívar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., Rodríguez- Fernández, J., Somoza, L., Vázquez, J.T., 2005. Miocene to recent contourite drifts development in the northern Weddell Sea (Antarctica). Global and Planetary Change 45 (1), 99–129.
73. Maldonado, A., Barnolas, A., Bohoyo, F., Escutia, C., Galindo-ZaldÍvar, J., Hernández-Molina, J., Jabaloy, A., Lobo, F.J., Nelson, C.H., RodrÍguez-Fernández, J., Somoza, L., Suriñach, E., Vázquez, J.T., 2006. Seismic Stratigraphy of Miocene to Recent Sedimentary Deposits in the Central Scotia Sea and Northern Weddell Sea: Influence of Bottom Flows (Antarctica). In: Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H., Tessensohn, F. (Eds), Antarctica. Springer, Berlin, Heidelberg, 441–446, doi: 10.1007/3-540-32934- X_56.
74. Michels, K.H., Rogenhagen, J., Kuhn, G., 2001. Recognition of contour- current influence in mixed contourite-turbidite sequences of the western Weddell Sea, Antarctica. Marine Geophysical Research 22, 465–485.
75. Mueller, R.D., Timmermann, R., 2017. Weddell Sea Circulation. Journal of Atmospheric and Solar-Terrestrial Physics 161, 105–117.
76. Nankivell, A.P., 1997. Tectonic Evolution of the Southern Ocean Between Antarctica, South America and Africa Over the Last 84 Ma. Ph.D. thesis University of Oxford, Oxford, UK.
77. Nicholls, K.W., Østerhus, S., Makinson, K., Gammelsrød, T., Fahrbach, E., 2009. Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Reviews of Geophysics 47, RG3003, doi: 10.1029/2007RG000250.
78. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research 117, B04406, doi: 10.1029/2011JB008916.
79. Paxman, G.J.G., Jamieson, S.S.R., Hochmuth, K., Gohl, K., Bentleya, M.J., Leitchenkov, G., Ferracciolif, F., 2019. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 535. 109346, doi: 10.1016/j.palaeo.2019.109346.
80. Riley, T.R., Jordan, T.A., Leat, P.T., Curtis, M.L., Millar, I.L., 2020. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Research 79, 185–196, doi: 10.1016/j. gr.2019.09.014.
81. Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason- 1 reveals buried tectonic structure. Science 346 (6205), 65–67.
82. Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blankenship, D.D., Damiani, T.M., Young, D., Cochran, J.R., Richter, T.D., 2016. New Antarctic gravity anomaly grid forenhanced geodetic and geophysical studies in Antarctica. Geophysical Research Letters 43 (2), doi: 10.1002/2015GL067439.
83. Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
84. Siegert, M., Ross, N., Corr, H., Kingslake, J., Hindmarsh, R., 2013. Late Holocene ice-flow reconfiguration in the Weddell Sea sector of West Antarctica. Quaternary Science Reviews 78, 98–107.
85. Smith, W.H.F., 1993. On the accuracy of digital bathymetric data. Journal of Geophysical Research 98, B6, 9591–9603.
86. Snyder, J.P., 1987. Map Projections – A Working Manual. U.S. Geological Survey Professional Paper 1395. Washington, DC: U.S. Government Printing Office, 124–137.
87. Snyder, J.P., 1993. Flattening the Earth: Two Thousand Years of Map Projections. ISBN 0-226-76747-7.
88. Storey, B.C., Dalziel, I.W.D., Garrett, S.W., Grunow, A.M., Pankhurst, R.J., Vennum, W.R., 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. In: Scotese, C.R., Sager, W.W. (Eds), 8th Geodynamics Symposium, Mesozoic and Cenozoic Plate Reconstructions. Elsevier, 381–390. (Tectonophysics, 155, 1–4).
89. Storey, B.C., Vaughan, A.P.M., Millar I.L., 1996. Geodynamic evolution of the Antarctic Peninsula during Mesozoic times and its bearing on Weddell Sea history. In: Storey, B.C., King, E.C., Livermore, R.A. (Eds), Weddell Sea Tectonics and Gondwana Break-up. Geological Society Special Publication, London, 108, 87–103.
90. Stolldorf, T., Schenke, H.-W., Anderson, J.B., 2012. LGM ice sheet extent in the Weddell Sea: evidence for diachronous behavior of Antarctic Ice Sheets. Quaternary Science Reviews 48, 20–31.
91. Stow, D.A.V., Faugères, J.C., Howe, J.A., Pudsey, C.J., Viana, A.R., 2002. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.C., Viana, A.R. (Eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series. Memoir. Geological Society of London, London, 7–20.
92. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., Abdul Fattah, R., Doornenbal, J.C., Hopper, J.R., 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems 20 (4), 1756– 1772.
93. Suetova, I.A., Ushakova, L.A., Lemenkova P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
94. Tingey, R.J., 1991. The regional geology of Archean and Proterozoic rocks in Antarctica. In: Tingey, RJ. (Ed.), The Geology of Antarctica, Clarendon Press, Oxford, 1–58.
95. Uenzelmann-Neben, G., 2006. Depositional patterns at Drift 7, Antarctic Peninsula: along-slope versus down-slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology 233, 49–62.
96. Weber, M.E., Bonani, G., Fütterer, K.D., 1994. Sedimentation processes within channel ridge systems, southern Weddell Sea, Antarctica. Palaeoceanography 9, 1027–1048.
97. Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. Eos Transactions of the American Geophysical Union 72 (41), 441.
98. Wessel, P., Smith, W.H.F., 1995. New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union 76 (33), 329.
99. Wessel, P., Smith, W.H.F., 1996. A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research 101, 8741-8743.
100. Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., Wobbe, F., 2013. Generic mapping tools: Improved version released. Eos Transactions American Geophysical Union 94 (45), 409–410.
Go to article

Authors and Affiliations

Polina Lemenkova
1
ORCID: ORCID

  1. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Natural Disasters, Anthropogenic Hazards and Seismicity of the Earth, Laboratory of Regional Geophysics and Natural Disasters, Bolshaya Gruzinskaya Str. 10, Bld. 1, Moscow, 123995, Russian Federation;
Download PDF Download RIS Download Bibtex

Abstract

The historical past of a building has a key influence on the variability of geotechnical conditions. These conditions change with a modification of the structural system, a change in function or only architectural elements (fashionable in a given period). In the article, various geotechnical and geophysical surveys are described, which led to a discovery of potential causes of a structural failure at historical Castle of Dukes of Pomerania in Szczecin. The investigation resulted in a discovery of an underground tunnel system constructed under the Castle, which existence was only suspected. The tunnels were constructed primarily during II World War, but also before that period. The article summarizes facts discovered due to investigation as well as historical and geological background related to the execution of the reinforced concrete and masonry tunnels. The lesson learned resulting from this discovery is that great care should be taken when historical areas are considered, even if the structure seems to be massive and robust.
Go to article

Authors and Affiliations

Tomasz Godlewski
1
ORCID: ORCID
Radosław Mieszkowski
2
ORCID: ORCID
Maciej Maślakowski
3
ORCID: ORCID

  1. Building Research Institute, 21 Ksawerów St., 02-656 Warsaw, Poland
  2. Warsaw University, Geology Department, 93 Zwirki i Wigury St., 02-089 Warsaw, Poland
  3. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of the detailed seismoacoustic profilling (CSP, boomar) are presented. The investigation has been carried out in February 1985 and 1988 during two Geodynamical Expeditions organized by the Institute of Geophysics of the Polish Academy of Sciences. The boomar penetration of the caldera floor went down to 150 msec. Four seismoacoustic units of volcanic formations have been determined. The unit A corresponds to pre-caldera series and occurred only in the border part of the flooded caldera. The unit contains mainly pyroclastic rocks (consolidated agglomerates and tuffs) and probably some intercalations of lavas. The units B, C and D fill up the caldera bottom and correspond to post-caldera series. The units are composed of pyroclastic rocks, containing also materials redeposited by lahars, glaciers, landwaters and by wind. The units C and D (the youngest one) were certainly deposited under water. All the units are cut by numerous faults, vents and other types of intrusions. The larger faults, en echelon type, are situated around the bottom and form a ring-fracture. Caldera was formed by succesive stages of collapsing. This process is not finished yet and volcanic activity is still alive (especially in the western part of the flooded caldera).

Go to article

Authors and Affiliations

Włodzimierz Kowalewski
Stanisław Rudowski
S. Maciej Zalewski
Download PDF Download RIS Download Bibtex

Abstract

Prof. Jerzy Jankowski passed away on 18th of August, 2020 and this paper brings back this outstanding scientist, one of the most influential geophysicists in Poland and an extraordinary man. Considered a prime architect in the development of the geomagnetic observations in Poland, Prof. Jankowski was a giant in geophysics covering a wide range of problems, from the cognition of the deep basement in Poland and Central Europe to the studies of earthquake precursors. Besides research Prof. Jankowski also offered his administrative services to the Institute of Geophysics of the Polish Academy of Sciences, among others being its director for more than 30 years and also to the Polish Academy of Sciences as the Head of the Division of Earth and Mining Sciences for nearly a decade. Prof. Jankowski received many significant honors during his life; internationally, he was recognized as a foreign member of the Finnish Academy of Science and Letters and Hungarian Academy of Sciences.

Go to article

Authors and Affiliations

Waldemar Jóźwiak
Paweł M. Rowiński
Download PDF Download RIS Download Bibtex

Abstract

The article presents application of the new geophysical amplitude data comparison method (ADCM), resulting from integrated geophysical survey using ground-penetrating radar (GPR) and magnetometry. The ADCM was applied to recognize the horizontal and vertical stratigraphy of a Roman senatorial villa located in Santa Marina (western part of Croatian Istria). The measurements were carried out in 2017−2019 at this site, accompanied by a use of GPR and gradientometer. These two methods significantly differ from each other, but on the other hand, they are complementary to some extent. This is due to the fact that the methods register different types of underground materials. The GPR records electromagnetic waves reflected from real buried remains or boundaries between geological or archaeological layers that differ significantly in electrical properties. The magnetic method, in turn, records the anomalies of the magnetic field intensity resulting from the underground concentration of ferromagnetic minerals, hence it is ideal for searching structures filled with organic matter or burning material. However, a separate usage of these methods does not guarantee a full picture of archaeological structures that are preserved underground. Only the application of the ADCM allowed for a comparison of GPR and magnetic amplitude data reading, following which a spatial image (2D and 3D) of the preserved archaeological structures and the geological stratigraphy of the Santa Maria site were obtained.

Go to article

Authors and Affiliations

Fabian Welc
Corinne Rousse
Gaetano Bencic
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of a geophysical survey from which detailed images of glacial and periglacial landforms and subsurface structures were obtained. Sediments and landforms on newly deglaciated terrain can be used to reconstruct the extent and character of glaciers in the past and add to the understanding of their response to climate and environmental changes. To derive spatial information from complex geomorphological terrain, joint interpretation of three non-intrusive geophysical methods were applied: Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), and time-lapse Seismic Tomography. These were used to identify subsurface structures in the forefield of the retreating Hans Glacier in SW Spitsbergen, Svalbard. Three main zones were distinguished and described: outwash plain, terminal moraine from the last glacial maximum, and glacial forefield proximal to the glacier front. Geophysical profiles across these zones reveal information on glacio-fluvial sediment thickness and structure, ice thickness and structure, and bedrock topography. The freezing-thawing effect of the active layer has a strong and deep impact, as demonstrated by variations in VP (P-wave velocity) in the obtained outcomes. The results are discussed in the context of the current climate in Svalbard. This study provides a snapshot of ground parameters and the current state of the subsurface in southern Spitsbergen. The boundary between sediment-bedrock layers was estimated to be from 5 to 20 m in depth. It is the first such extensive description of periglacial structures in the forefield of the Hans Glacier, utilising the longest ERT profile (1500 m) in Svalbard together with deep GPR and precise seismic tomography.
Go to article

Authors and Affiliations

Artur Marciniak
1
ORCID: ORCID
Marzena Osuch
1
ORCID: ORCID
Tomasz Wawrzyniak
1
ORCID: ORCID
Bartosz Owoc
1
ORCID: ORCID
Wojciech Dobiński
2
ORCID: ORCID
Michał Glazer
2
Mariusz Majdański
1
ORCID: ORCID

  1. Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
  2. Faculty of Natural Sciences, University of Silesia, Sosnowiec, 41-200, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present report worked out in the form of a communication the general description of course and realization of the scientifical and technical programmes of the VIth Expedition to the Polish Polar Station in the Hornsund fiord on Spitsbergen is given. The details of the programme and results of investigations on particulat items constitute already or will constitute within the next time a subject of special publications.

Go to article

Authors and Affiliations

Jan Cisak
Download PDF Download RIS Download Bibtex

Abstract

Based on the reinterpretation of gravimetric, magnetic, seismic and magnetotelluric studies, new features of the sub-Permian basement in the area between the Dolsk Fault and the Middle Odra Fault, SW Poland, are identified. Among numerous faults and lineaments indicated in the article, those limiting both the Wolsztyn–Pogorzela High and a positive anomaly in the Lower Silesian Basin, as well as the faults in the vicinity of the Odra River are particularly prominent. N-S oriented structural elements are also visible in the gravity image. One of them separates the Pogorzela High from the Wolsztyn High. In light of the obtained results, according to refraction seismic surveys, the Polish equivalent to the Mid-German Crystalline Rise is located farther north from commonly accepted position within the Middle Odra Metamorphic Complex. The study results, supported by data from the neighboring area of Germany, may be important for further prospecting for sediment-hosted Cu and other metal deposits. The reprocessing of archival geophysical data using method of effective reflection coefficients (ERC) enabled the creation of more accurate structural model of ore series within the area of the Nowa Sól deposit in SW Poland. In terms of mineral resource prospects, this creates the possibility of applying new results from the study area to the similar zones in the corresponding part of Germany, which is the area between the phyllite zone and the Harz Mountains hosting very diverse and rich mineralization.

Go to article

Authors and Affiliations

Lidia Dziewińska
ORCID: ORCID
Radosław Tarkowski
ORCID: ORCID
Tomasz Bieńko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The following article collects and describes several practical problems that can be encountered when performing geophysical field measurements using the electrical resistivity tomography (ERT) method. The methodology of work carried out with the Terrameter LS apparatus of the Swedish company ABEM (currently the company has changed its name to GUIDELINE GEO) was presented and discussed. The attention was paid to interesting solutions that increase the efficiency of works, especially in works related to linear investments. Errors that may appear during the use of the roll-along method are indicated, in particular, those appearing in measurements where too long measurement sections are transferred, as well as problems resulting from high electrode earthing, nonlinear profile traces and variable morphology. It describes how the use of different measurement systems affects the depth of prospecting, and which systems cope well in the area with disturbances. The article also emphasizes that the work should be properly planned before starting field research.
Go to article

Authors and Affiliations

Grzegorz Pacanowski
1
ORCID: ORCID
Maciej Maślakowski
2
ORCID: ORCID
Anna Lejzerowicz
2
ORCID: ORCID

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The succesive fifth whole-year research expedition stayed at the polar station of the Institute of Geophysics, Polish Academy of Sciences, in the Hornsund fiord from July 1982 to August 1973. Continuous observations as well as sejsmologic, magnetic and meteorological records, constituting continuation of the investigations started in summer 1978. were carried out by the wintering group of 8 men. Also separate research programmes: physics of atmosphere and ionosphere, sedimcntologo-oceanological, geomorphological and medical investigations, including observations of white bears, were realized. Many technical works, repairs and adaptations were carried out as well.

Go to article

Authors and Affiliations

Stanisław Rudowski

This page uses 'cookies'. Learn more