Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work determined the influence of aluminium in the amount from about 1% to about 7% on the graphite precipitates in cast iron with

relatively high silicon content (3.4% to 3.90%) and low manganese content (about 0.1%). The cast iron was spheroidized with cerium

mixture and graphitized with ferrosilicon. The performed treatment resulted in occurring of compact graphite precipitates, mainly nodular

and vermicular, of various size. The following parameters were determined: the area percentage occupied by graphite, perimeters of

graphite precipitates per unit area, and the number of graphite precipitates per unit area. The examinations were performed by means of

computer image analyser, taking into account four classes of shape factor. It was found that as the aluminium content in cast iron increases

from about 1.1% to about 3.4%, the number of graphite precipitates rises from about 700 to about 1000 per square mm. For higher

Al content (4.2% to 6.8%) this number falls within the range of 1300 – 1500 precipitates/mm2

. The degree of cast iron spheroidization

increases with an increase in aluminium content within the examined range, though when Al content exceeds about 2.8%, the area

occupied by graphite decreases. The average size of graphite precipitates is equal to 11-15 μm in cast iron containing aluminium in the

quantity from about 1.1% to about 3.4%, and for higher Al content it decreases to about 6 μm.

Go to article

Authors and Affiliations

M.S. Soiński
A. Jakubus
K. Skurka
Download PDF Download RIS Download Bibtex

Abstract

The influence of a shape of graphite precipitates in cast iron on the thermal shock resistance of the alloy was initially determined. Investigations included the nodular cast iron and the vermicular one, as well as the cast iron containing flake graphite. The thermal shock resistance was examined at a special laboratory stand which allowed for multiple heating and cooling of specimens within the presumed temperature range. The specimens were inductively heated and then cooled in water of constant temperature of about 30°C. There were used flat specimens 70 mm long, 5 mm thick in the middle part, and tapering like a wedge over a distance of 15 mm towards both ends. The total length of cracks generated on the test surfaces of the wedge-shaped parts of specimens was measured as a characteristic value inversely proportional to the thermal shock resistance of a material. The specimens heated up to 500°C were subjected to 2000 test cycles of alternate heating and cooling, while the specimens heated up to 600°C underwent 1000 such cycles. It was found that as the heating temperature rose within the 500-600°C range, the thermal shock resistance decreased for all examined types of cast iron. The research study proved that the nodular cast iron exhibited the best thermal shock resistance, the vermicular cast iron got somewhat lower results, while the lowest thermal shock resistance was exhibited by grey cast iron containing flake graphite.
Go to article

Authors and Affiliations

A. Jakubus
M.S. Soiński
Download PDF Download RIS Download Bibtex

Abstract

The influence of aluminium (added in quantity from about 0.6% to about 2.8%) on both the alloy matrix and the shape of graphite precipitates in cast iron treated with a fixed amounts of cerium mischmetal (0.11%) and ferrosilicon (1.29%) is discussed in the paper. The metallographic examinations were carried out for specimens cut out of the separately cast rods of 20 mm diameter. It was found that the addition of aluminium in the amounts from about 0.6% to about 1.1% to the cast iron containing about 3% of carbon, about 3.7% of silicon (after graphitizing modification), and 0.1% of manganese leads to the occurrence of the ferrite-pearlite matrix containing cementite precipitates in the case of the treatment of the alloy with cerium mischmetal . The increase in the quantity of aluminium up to about 1.9% or up to about 2.8% results either in purely ferrite matrix in this first case or in ferrite matrix containing small amounts of pearlite in the latter one. Nodular graphite precipitates occurred only in cast iron containing 1.9% or 2.8% of aluminium, and the greater aluminium content resulted in the higher degree of graphite spheroidization. The noticeable amount of vermicular graphite precipitates accompanied the nodular graphite.

Go to article

Authors and Affiliations

M. Soiński
Download PDF Download RIS Download Bibtex

Abstract

The influence of aluminium added in amounts of about 1.6%, 2.1%, or 2.8% on the effectiveness of cast iron spheroidization

with magnesium was determined. The cast iron was melted and treated with FeSiMg7 master alloy under industrial conditions.

The metallographic examinations were performed for the separately cast rods of 20 mm diameter. They included the assessment of the

shape of graphite precipitates and of the matrix structure. The results allowed to state that the despheroidizing influence of aluminium

(introduced in the above mentioned quantities) is the stronger, the higher is the aluminium content in the alloy. The results of examinations

carried out by means of a computer image analyser enabled the quantitative assessment of the considered aluminium addition influence.

It was found that the despheroidizing influence of aluminium (up to about 2.8%) yields the crystallization of either the deformed nodular

graphite precipitates or vermicular graphite precipitates. None of the examined specimens, however, contained the flake graphite

precipitates. The results of examinations confirmed the already known opinion that aluminium widens the range of ferrite crystallization.

Go to article

Authors and Affiliations

M.S. Soiński
A. Jakubus
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the work was to determine the morphology of graphite that occurs in vermicular cast iron, both in the as-cast state and after heat treatment including austenitization (held at a temperature of 890 °C or 960 °C for 90 or 150 min) and isothermal quenching (i.e. austempering, at a temperature of 290 °C or 390 °C for 90 or 150 min). In this case, the aim here was to investigate whether the heat treatment performed, in addition to the undisputed influence of the cast iron matrix on the formation of austenite and ferrite, also affects the morphology of the vermicular graphite precipitates and to what extent. The investigations were carried out for the specimens cut from test coupons cast in the shape of an inverted U letter (type IIb according to the applicable standard); they were taken from the 25mm thick walls of their test parts. The morphology of graphite precipitates in cast iron was investigated using a Metaplan 2 metallographic microscope and a Quantimet 570 Color image analyzer. The shape factor F was calculated as the quotient of the area of given graphite precipitation and the square of its perimeter. The degree of vermicularization of graphite was determined as the ratio of the sum of the graphite surface and precipitates with F <0.05 to the total area occupied by all the precipitations of the graphite surface. The examinations performed revealed that all the heat-treated samples made of vermicular graphite exhibited the lower degree of vermicularization of the graphite compared to the corresponding samples in the as-cast state (the structure contains a greater fraction of the nodular or nearly nodular precipitates). Heat treatment also caused a reduction in the average size of graphite precipitates, which was about 225μm2 for the as-cast state, and dropped to approximately 170-200 μm2 after the austenitization and austempering processes.
Go to article

Bibliography

[1] Sorelmetal, On the nodular cast iron. (2006). Warsaw: Ed. Metals & Minerals Ltd.
[2] Tupaj, M., Orłowicz, A. W., Mróz, M., Kupiec, B., et al. (2020). Ultrasonic Testing of Vermicular Cast Iron Microstructure. Archives of Foundry Engineering. 20(4), 36-40. DOI: 10.24425/afe.2020.133345.
[3] Guzik, E. & Kleingartner, T. (2009). A study on the structure and mechanical properties of vermicular cast iron with pearlitic-ferritic matrix. Archives of Foundry Engineering. 9(3), 55-60.
[4] Zhang, M.X., Pang, J.C., Qiu, Y., Li, S.X., et al. (2020). Influence of microstructure on the thermo-mechanical fatigue behavior and life of vermicular graphite cast irons. Materials Science & Engineering A. 771, 138617.DOI: 10.1016/J.MSEA.2019.138617.
[5] Zhang, Y., Guo, E., Wang, L., Zhao, S., et al. (2020). Effect of the matrix structure on vermicular graphite cast iron properties. International Journal of Materials Research. 111(5), 379-384. DOI: 10.3139/146.111891.
[6] Qiaoqin, G., Zhong, Y., Ding, G., Dong, T. et al. (2019). Research on the oxidation mechanism of vermicular graphite cast iron. Materials. 12, 3130; DOI: 10.3390/ma12193130.
[7] Perzyk, M., Waszkiewicz, S., Kaczorowski, M., Jopkiewicz, A. (2000). Foundry. Warsaw: ED. Science and Technology.
[8] Kosowski, A. (2008). Foundations of foundry. Krakow: Ed. Scientific Akapit.
[9] Soiński, M.S. & Warchala, T. (2006). Cast iron moulds for glassmaking industry. Archives of Foundry. 6(19), 289-294.
[10] Warchala, T. (1988). Metallurgy and iron founding. Part 1 The structure and properties of cast iron. Ed. Częstochowa University of Technology.
[11] Andrsova, Z., Volesky, L. (2012). The potential of isothermally hardened iron with vermicular graphite. Comat 2021. Recent trends in structural materials. 21 - 22. 11. 2012, Plzeň, Czech Republic, EU.
[12] Gumienny, G. & Kacprzyk, B. (2018). Copper in Ausferritic Compacted Graphite Iron. Archives of Foundry Engineering. 18(1), 162-166. DOI: 10.24425/118831.
[13] Pytel, A., Gazda, A. (2014) Evaluation of selected properties in austempered vermicular cast iron (AVCI). Transactions of Foundry Research Institute. LIV(4), 23-31. DOI: 10.7356/iod.2014.18.
[14] Andršová, Z., Kejzlar, P., Švec, M. & Skrbek, B. (2017). The effect of heat treatment on the structure and mechanical properties of austempered iron with vermicular graphite. Materials Science Forum. 891, 242-248. DOI: 10.4028/www.scientific.net/MSF.891.242.
[15] Kazazi, A., Montazeri, S.M. & Boutorabi, S.M.A. (2020). The austempering kinetics, microstructural development, and processing window in the austempered, Fe-3.2C-4.8Al compacted graphite cast iron. Iranian Journal of Materials Science and Engineering. 17(4), 46-54. DOI: 10.22068/ijmse.17.4.46.
[16] Jakubus, A., Kostrzewa, J., Ociepa, E. (2021). The influence of parameters of heat treatment on the microstructure and strength properties of the ADI and the AVGI irons. METAL 2021, 30th Anniversary International Conference on Metallurgy and Materials. May 26 - 28, 2021, Brno, Czech Republic, EU (pp.34-39). DOI: 10.37904/metal.2021.4082.
[17] Podrzucki, C. (1991). Cast iron. Structure, properties, applications. vol. 1 and 2, Cracow: Ed. ZG STOP. (in Polish).
[18] Soiński, M.S. & Mierzwa, P. (2011). Effectiveness of cast iron vermicularization including ‘conditioning’ of the alloy. Archives of Foundry Engineering. 11(2), 133-138.
[19] Warchala, T. (1995). Metallurgy and iron founding. Part 2 Cast iron technology. Ed. Czestochowa University of Technology.
[20] Mierzwa, P. & Soiński, M.S. (2010). The effect of thermal treatment on the mechanical properties of vermicular cast iron. Archives of Foundry Engineering. 10(spec.1), 99-102.
[21] Mierzwa, P., Soiński, M.S. (2012). Austempered cast iron with vermicular graphite. 70th World Foundry Congress (WFC 2012): Monterrey, Mexico, April 2012, (pp. 25-27).
[22] Mierzwa, P. & Soiński, M.S. (2014). Austempered cast iron with vermicular graphite. Foundry Trade Journal International. 188(3713), April 2014, 96-98.
[23] Polish Standard PN-EN 1563, Founding. Spheroidal graphite cast iron, (2000).
[24] Soiński, M.S. (1980). Application of shape measurement of graphite precipitates in cast iron in optimising the spheroidizing process. Acta Stereologica. 5(2), 311-317.
Go to article

Authors and Affiliations

M.S. Soiński
1
A. Jakubus
1
ORCID: ORCID
B. Borowiecki
1
P. Mierzwa
2

  1. The Jacob of Paradies University in Gorzów Wielkopolski, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
  2. Czestochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Quantitative evaluation of the microstructure obtained in a product is nowadays commonly required both in R&D activities and during routine quality control of materials and components.
This paper presents an assessment of the quality of ductile cast iron, based on investigations of the effect of chemical composition on the distribution of ductile graphite precipitates in low-alloy cast iron EN-GJS-500-7. The size of graphite precipitates was expressed in terms of equivalent cross-sectional diameter, which made it possible to describe the distribution of graphite precipitates with a function simulating the log-normal distribution of graphite. The resulting U, W and Z parameters were statistically analysed, including the effect of chemical composition on graphite distribution. In the studied cast iron, the components that increase the U parameter are silicon, manganese and phosphorus, thus favourably affecting the total graphite number. In contrast, the constituents that decrease the U parameter are carbon, chromium and aluminium.
Go to article

Bibliography

[1] Cybo, J., Jura, S. (1995). Functional description of isometric structures in quantitative metallography. Gliwice: Silesian University of Technology Publishing House. (in Polish)
[2] Alp, T., Wazzan, A.A. & Yilmaz, F. (2005), Microstructure-property relationships in cast irons. The Arabian Journal for Science and Engineering. 30(2B), 163-175.
[3] Podrzucki, C. (1999). Publishing House. Cracow: STOP. (in Polish).
[4] Angus, H.T. (1978). Cast Iron: Physical and Engineering Properties. London-Boston: Edit Butterworth a. Co.
[5] Jura, S. & Jura, Z. (2001). The influence of the chemical composition and degree of spheroidization of graphite on the mechanical properties mechanical properties of cast iron. Archives of Foundry. 1(1), (2/2), 1-8. ISSN 1642-5308
[6] Ripplinger, C., Gastens, M., Zimmermann, J., Bjӧrn, P., Broeckmann, C., Schrӧder, K-U. & Bührig-Polaczek, A. (2021). Potential of metallurgical gradients in the design of components structural components made of ductile iron. Materials, 14(9), 2411. DOI: 10.3390/ma14092411
[7] Menk, W., Tunzini, S., Rieck, T., Honsel, C. & Weiss, K. (2010). Material development of ductile iron, simulation and production technology for local reinforcement of castings. Key Engineering Materials. 457, 343-348. https://doi.org/10.4028/www.scientific.net/KEM.457.343
[8] Stefanescu, D.M. & Suárez, R. (2020). 90 years of thermal analysis as a control tool in the melting of cast iron. China Foundy. 17(2), 69-84. https://doi.org/10.1007/s41230-020-0039-x
[9] Friess, J., Bührig-Polaczek, A., Sonntag, U. & Steller, I. (2020). From individual graphite assignment to an improved digital image analysis of ductle iron. International Journal of Metalcasting. 14, 1090-1104. https://doi.org/10.1007/s40962-020-00416-3
[10] Bartocha, D. (2006). The structure of EN-GJS-500-7 cast iron depending on the feedstock materials. Archives of Foundry. 6(22), 27-32. ISSN 1642-5308
[11] Materials of Śrem Cast Iron Foundry based in Śrem. Retrieved September 12, 2021, from http://www.proservicetech.it/itacax-thermal-analysis-final-iron-quality-control/
Go to article

Authors and Affiliations

H. Pacha-Gołębiowska
1
ORCID: ORCID

  1. Akademia Nauk Stosowanych im. Jana Amosa Komeńskiego w Lesznie, ul. Mickiewicza 5, 64-100 Leszno, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents results of investigations concerning the production of cast iron containing about 5-6% aluminium, with the ferritic

matrix in the as-cast state and nodular or vermicular graphite precipitates. The examined cast iron came from six melts produced under the

laboratory conditions. It contained aluminium in the amount of 5.15% to 6.02% (carbon in the amount of 2.41% to 2.87%, silicon in the

amount of 4.50% to 5.30%, and manganese in the amount of 0.12% to 0.14%). After its treatment with cerium mixture and graphitization

with ferrosilicon (75% Si), only nodular and vermicular graphite precipitates were achieved in the examined cast iron. Moreover, it is

possible to achieve the alloy of pure ferritic matrix, even after the spheroidizing treatment, when both the aluminium and the silicon occur

in cast iron in amounts of about 5.2÷5.3%.

Go to article

Authors and Affiliations

A. Jakubus
P. Kordas
M.S. Soiński
K. Skurka
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a study on the effect of passage of time on magnesium content in iron alloys and the effect of magnesium content on the number of vermicular graphite precipitations per unit surface area and value of the longitudinal ultrasonic wave velocity for two different vermicularization methods. The study was carried out with the use of inspection bar castings. For specific production conditions, it has been found that in case of application of both the cored wire injection method and the method of pouring liquid metal over magnesium master alloy on ladle bottom, the satisfactory level of magnesium content in the bottom-pour ladle, for which it was still possible to obtain castings with vermicular graphite, was 0.018% Mg. In case of the cored wire injection method, the “time window” available to a pouring station at which castings of vermicular cast iron are expected to be obtained, was about 5 minutes. This corresponds to the longitudinal ultrasonic wave velocity values exceeding 5500 m/s and the number of graphite precipitations per unit surface area above 320 mm–2. In case of the master alloy method, the respective “time window” allowing to obtain castings of vermicular cast iron was only about 3 minutes long. This corresponds to the longitudinal ultrasonic wave velocity value above 5400 m/s and the number of graphite precipitations per unit surface area above 380 mm–2.

Go to article

Authors and Affiliations

M. Tupaj
ORCID: ORCID
A.W. Orłowicz
ORCID: ORCID
Marek Mróz
ORCID: ORCID
B. Kupiec
D. Pająk
M. Kawiński

This page uses 'cookies'. Learn more