Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Finite Element Method FEM via commercially available software has been used for numerical simulation of the compaction process of bentonite-bonded sand mould. The mathematical model of soil plasticity which involved Drucker-Prager model match with Mohr-Coulomb model was selected. The individual parameters which required for the simulation process were determined through direct shear test based on the variation of sand compactability. The novelty of this research work is that the individual micro-mechanical parameters were adopted depend on its directly proportional to the change of sand density during the compaction process. Boundary conditions of the applied load, roller and fixed constraint were specified. An extremely coarse mesh was used and the solution by time-dependent study was done for investigation of material-dependent behaviour of green sand during the compaction process. The research implemented also simulation of the desired points in sand mould to predict behaviour of moulding process, and prevent failure of the sand mould. Distance-dependent displacement and distance-dependent pressure have been determined to investigate the effective moulding parameters without spent further energy and cost for obtaining green sand mould. The obtained numerical results of the sand displacement show good agreement with the practical results.
Go to article

Bibliography

[1] Naeimi, K., Baradaran, H., Ahmadi, R. & Shekari, M. (2015). Study and simulation of the effective factors on soil compaction by tractors wheels using the finite element method. Journal of Computational Applied Mechanics. 46(2), 107-115. DOI: 10.22059/jcamech.2015.55093.
[2] Soane, B. (1990). The role of organic matter in soil compatibility: A review of some practical aspects. Soil & Tillage Research. 16(1-2), 179-201. DOI: https://doi.org/ 10.1016/0167-1987(90)90029-D.
[3] Minaei, S. (1984). Multi pass effects of wheel and track- type vehicles on soil compaction. MS Thesis, Virginia Polytechnic Institute and State University.
[4] Chen, Y. Tessier, Y. & Rauffignat, S. (1998). Soil bulk density estimation for tillage systems and soil texture. Transactions of the American Society of Agricultural and Biological Engineers. 41(4), 1601-1610.
[5] Wenzhen, L. & Junjiao, W. (2007). Numerical Simulation of Compacting Process of Green Sand Molding Based on Sand Filling. Materials Science Forum. 561-565, 879-1882. DOI: https://doi.org/10.4028/www.scientific.net/MSF.561-565.1879.
[6] Hovad, E., Larsen, P., Walther, J., Thorborg, J. & Hattel,. J.H. (2015). Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM). IOP Conference Series Materials Science and Engineering. 84(1) 1-8. DOI: 10.1088/1757-899X/84/1/012023.
[7] Hua, L., Junjiao, W., Tianyou, H. & Hiroyasu, M. (2011). A new numerical simulation model for high pressure squeezing moulding. China foundry. 8(1) 25-29. ID: 1672-6421(2011)01-025-05.
[8] Schijndel, van, A.W.M.(2007). Integrated heat air and moisture modeling and simulation. Doctoral dissertation, Eindhoven University of Technology. https://doi.org/ 10.6100/IR622370.
[9] Terzaghi, K. (1976). Earthwork mechanics based on soil physics (in German). G. Gistel & Cie. GmbH, Wien.
[10] Tomas, J. (1991). Modeling of the flow behavior of bulk solids on the basis of the interaction forces between the particles and applications in the design of bunkers (in German). Habilitation thesis, TU Bergakademie Freiberg.
[11] Inoue, Y., Motoyama, Y., Takahashi, H., Shinji, K. & Yoshida, M. (2013). Effect of sand mold models on the simulated mold restraint force and the contraction of the casting during cooling in green sand molds. Journal of Materials Processing Technology. 213(7), 1157-1165. https://doi.org/10.1016/j.jmatprotec.2013.01.011.
[12] Kadauw, A. (2006). Mathematical modeling of the moulding material processes (in German). Doctoral dissertation, TU- Bergakademie Freiberg.
[13] Lang, H.-J., Huder, J., Amann, P., Puzrin, A.M. (1996). Soil mechanics and foundation (in German). Springer, Berlin Heidelberg.
[14] Suroso, P., Samang, L., Tjaronge, W. & Muhammad Ramli. (2016). Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ijuk-Aren, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3(4), 21-26.
[15] Nujid, M.M. & Taha, M.R. (2016). Soil Plasticity Model for Analysis of Collapse Load on Layers Soil. EDP Sciences, MATEC Web of Conferences. 47(03020) 1-6. DOI: 10.1051/matecconf/ 20164703020.
[16] Chen, W.F. Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics: Theory and Implementation, Elsevier Science Publishers B. V., ISBN 978-0444430434, 5-36.
[17] Bast, J., Kadauw, A. (2004). 3D-Numerical Simulation of Squeeze Moulding with the Finite element Method. Proceeding of 66th World Foundry Congress Istanbul, 247 - 258.
Go to article

Authors and Affiliations

Dheya Abdulamer
ORCID: ORCID
A. Kadauw
1 2

  1. IMKF. TU - Bergakademie Freiberg, Germany
  2. Salahddin University-Erbil, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the present study is enhanced of the sand moulding process through addressing the sand mould defects and failures, ultimately lead to improve production of the sand castings with well-defined of pattern profiles. The research aimed to reduce the cost and energy expenditure associated with the compaction time of the sand moulding process. Practical destructive tests were conducted to assess properties of the green sand moulds. Linear regression and multi-regression methods were employed to identify the key factors influencing the sand moulding process. The proposed experimental destructive tests and predicted regression methods facilitated measurement of the green sand properties and enabled evaluation of the effective moulding parameters, thereby enhancing the sand moulding process. Factorial design of experiments approach was employed to evaluate effect of parameters of water content and mixing time of the green sand compaction process on the mechanical properties of green sand mould namely the tensile strength, and compressive strength.
Go to article

Bibliography

[1] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. DOI: https://doi.org/10.1007/s11665-019-04089-w.
[2] Shahria, S., Tariquzzaman, M., Rahman, H., Al Amin, M., & Rahman, A. (2017). Optimization of molding sand composition for casting Al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI:10.11648/j.ijmea.20170503.13.
[3] Patil, G. & Inamdar, K. (2014). Optimization of casting process parameters using taguchi method. International Journal of Engineering Development and Research. 2(2), 2506-2511.
[4] Kassie, A. & Assfaw, S. (2013). Minimization of casting defects. IOSR Journal of Engineering. 3(5), 31-38. DOI:10.9790/3021-03513138.
[5] Gadag, S. Sunni Rao, K. Srinivasan, M. et al. (1987). Effect of organic additives on the properties of green sand assessed from design of experiments. AFS Transactions. 42, 179-186.
[6] Karunaksr, D. & Datta, G. (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Caly Science. 37(1-2), 58-66. DOI:10.1016/j.clay.2006.11.005.
[7] Said, R. Kamal, M. Miswan, N. & Ng, S. (2018). Optimization of moulding composition for quality improvement of sand casting. Journal of Advanced Manufacturing Technology. 12(1(1), 301-310.
[8] Pulivarti, S. & Birru, A. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15, 152-159. DOI: 10.1007/s41230-018-7188-1.
[9] Abdulamer, D. (2023). Impact of the different moulding parameters on engineering properties of the green sand mould. Archives of Foundry. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.
[10] Kumar, S. Satsangi, P. & Prajapati, D. (2011). Optimization of green sand casting process parameters of a foundry by using taguchi’s method. International Journal of Advanced Manufacturing Technology. 55(1-4), 23-34. DOI: 10.1007/s00170-010-3029-0.
[11] Murguía, P. Ángel, R. Villa González del Pino, E. Villa, Y. & Hernández del Sol, J. (2016). Quality improvement of a casting process using design of experiments. Prospectiva. 14(1), 47-53. DOI: 10.15665/rp.v14i1.648.
[12] Abdullah, A. Sulaiman, S. Baharudin, B. Arifin, M. & Vijayaram, T. (2012). Testing for green compression strength and permeability properties on the tailing sand samples gathered from ex tin mines in perak state, Malaysia. Advanced Materials Research. 445, 859-864. DOI: 10.4028/www.scientific.net/AMR.445.859.
[13] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering, 112(2), 70-76. DOI: 10.5604/01.3001.0015.6289.
[14] Bast, J., Simon, W. & Abdullah, E. (2010). Investigation of cogs defects reason in green sand moulds. Archives of Metallurgy and Materials. 55(3), 749-755. DOI: 10.24425/afe.2023.144288.
[15] Montgomery, D.C. (2001). Design and Analysis of Experiments. (5th ed.). John Wiley & Sons, Inc.
[16] Dhindaw, B.K., Chakraborty, M. (1974). Study and control of properties and behavior of different sand systems by application of statistical design of experiments In the 41st International Foundry Congress, (pp. 9-14). Belgique.
[17] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73, DOI: 10.24425/afe.2023.146664, 2023.
[18] Parappagoudar, M. Pratihar, D. & Datta, G. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13. DOI: 10.1179/136404607X184952.
[19] Dietert, H. W. Brewster, F. S. & Graham, A. L. (1996). AFS Trans. 74, 101-111.
[20] Parappagoudar, M. Pratihar, D. & Datta G. (2005). Green sand mould system modelling through design of experiments. Indian Foundry Journal. 51(4), 40-51.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology- Iraq

This page uses 'cookies'. Learn more