Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hot tearing severity was evaluated in this experiment by introducing a new apparatus called Constrained Rod Casting Modified Horizontal (CRCM-Horizontal). Six constraint bars with different lengths can produce hot tearing on the cast sample. Mold position was modified from vertical to horizontal and the shape was changed from a harp shape to a star shape, which allows for the liquid metal to feed into each rod cavity simultaneously. Hot tearing development was recorded along the bars by a digital camera. A new Hot Tearing Susceptibility (HTS) formula was developed for quantitative investigation of hot tearing on a cast sample. The parameters of the HTS formula are bar length of cast sample (Li), tear severity (Ci) and location of hot tear (Pi). Footprint charts and hot tear scales are used to illustrate hot tearing severity. The experiment was conducted with Al-1.36Zn-1.19Si and Al-5.9Cu-1.9Mg alloys to investigate the sensibility of the apparatus and modification its operation.

Go to article

Authors and Affiliations

V. Malau
Akhyar
P. Tri Iswanto
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS) tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

Go to article

Authors and Affiliations

B.J.H. de Bruyn
J.W. Jansen
E.A. Lomonova
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning to AlCu4MgSi alloy ingots produced using horizontal continuous casting process. The presented research was focused on the precise determination of phase composition of the precipitates formed during the solidification of ingots and the analysis of their thermal stability. In order to assess the morphology of precipitates in the AlCu4MgSi alloy, data obtained by using a computer simulation of thermodynamic phenomena were compiled with results obtained using advanced research techniques, i.e. High-temperature X-ray diffraction (HT-XRD), SEM-EDS, Thermal and derivative analysis (TDA) and Glow discharge optical emission spectroscopy (GD OES). SEM observations and analysis of chemical composition in micro-areas showed that the precipitates are mainly intermetallic θ-Al2Cu and β-Mg2Si phases, and also presence of Al19Fe4MnSi2 intermetallic phase was confirmed by X-ray diffraction studies. Based on the prepared Thermo-Calc simulation data, high-temperature X-ray diffraction measurements were conducted.

Go to article

Authors and Affiliations

P.M. Nuckowski
M. Kondracki
T. Wróbel
ORCID: ORCID

This page uses 'cookies'. Learn more