Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 63
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In Poland, in recent years, there has been a rapid accumulation of sewage sludge – a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analyzed on the basis of their basic properties, i.e., density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The research on technological and functional properties was carried out, the aim of which was to determine the practical usefulness of the hardening slurries used in the experiment. Subsequently, leaching tests were performed for heavy metals in the components, the structure of the hardening slurries. An experiment showed leaching of hazardous compounds at a level allowing their practical application. The article presents the potential uses of fly ash from SSTT in hardening slurry technology.
Go to article

Bibliography

  1. Asavapisit, S., Naksrichum, S. & Harnwajanawong, N. (2005). Strength, lechability, and microstructure characteristics of cement-based solidified plating sludge. Cement and Concrete Research 35, pp. 1042–1049.
  2. Batchelor, B. (2006). Overview of waste stabilization with cement. Waste Management 26, pp. 689–698.
  3. Bobrowski, A., Gawlicki, M. & Małolepszy, J. (1997). Analytical Evaluation of Immobilization of Heavy Metals in Cement Matrices, Environmental Science & Technology, 31, 3, pp. 745-749.
  4. Chang, F.C., Lin, J.D., Tsai, C.C. & Wang, K.S. (2010). Study on cement mortar and concrete made with sewage sludge ash. Water Science and Technology, 62, 7, pp. 1689-1693, 2010.
  5. Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L. & Cheeseman, C. (2009). Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of hazardous materials. 171 (1-3), pp. 76-82.
  6. Chou, J.-D., Wey, M.-Y. & Chang, S.-H. (2009). Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. Journal of Hazardous Materials 162 (2–3), pp. 1000–1006.
  7. Elicker, C., Sanches Filho P.J. & Castagno K.R.L. (2014). Electroremediation of heavy metals in sewage sludge. Braz. J. Chem. Eng. Sao Paulo, 31(2), pp. 365–371.
  8. EN 450-1:2012. (2012). Fly ash for concrete. Definition, specifications and conformity criteria.
  9. Falaciński, P. (2012). Possible applications of hardening slurries with fluidal fly ashes in environment protection structures. Archives of Environmental Protection. 38, 3, pp. 91-104. DOI: 10.2478/v10265-012-0031-7.
  10. Falaciński, P. & Szarek, Ł. (2016).Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures. Archives of Hydro-Engineering and Environmental Mechanics, 63, 1, pp. 47–61. DOI: 10.1515/heem-2016-0004
  11. Gawdzik, J. & Latosińska, J. (2014). Assessment of sewage sludge incineration fly-ash heavy metal immobilization. Engineering and Protection of Environment, t. 17, vol. 3, pp. 415-421.
  12. Guo, B., Liu, B., Yang, J. & Zhang, S. (2017).The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. Journal of environmental management, 193, pp. 410-422.
  13. Hoi, K. L., Barford, J.P. & Makay, G. (2010). Utylization of Incineration Waste Ash Residues in Portland Cement Clinker, Chemical Engineering Transaction, 21, pp. 757-762.
  14. Ibragimow, A., Głosińska, G., Siepak, M. & Walna, B. (2010). Preliminary studies of heavy metal pollution in floodplain sediments. Works and Geographic Studies 44, pp. 233–247.
  15. Jakob, A., Stucki ,S. & Kuhn, P. (1995). Evaporation of heavy metals during the heat treatment of municipal solid waste fly ash. Environmental Science and Technology 29, pp. 2429–2436.
  16. Jama-Rodzeńska, A., Bocianowski, J. & Nowak, W. (2014). Impact of municipal sewage sludge on heavy metal content in the sprouts of Salix viminalis L. clones. ZPPNR 576, pp. 45–56. (in Polish)
  17. Kledynski, Z. & Rafalski, L. (2009). Hardening slurries, Warszawa, KILiW PAN, IPPT PAN.(in Polish)
  18. Le Forestier, L. & Libourel, G. (2008). High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors. Journal of Hazardous Materials 154 (1–3) pp. 373–380.
  19. Li, Z. & Shuman, L.M. (1996). Redistribution of forms of zinc, cadmium and nickel in soils treated with EDTA. Sci Total Environ 191, pp. 95–107.
  20. Łukawska, M. (2014). Speciation analysis of phosphorous in sewage sludge after thermal incineration. Inżynieria i Ochrona Środowiska, 17 (3), pp. 433-439 (in Polish)..
  21. Marcinkowski, T. (2004). Alkaline stabilization of municipal sewage sludges. Scientific Papers of the Institute of Environment Protection Engineering of the Wroclaw University of Technology No. 76, Poland.
  22. Nowaka, B., Rochaa, S.F., Aschenbrennerb, F., Rechbergerb, H. & Wintera, F. (2012). Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type. Chemical Engineering Journal 179 pp. 178– 185.
  23. Petruzzelli, G., Szymura, I., Lubrano,L. & Pezzarossa, B. (1989). Chemical speciation of heavy metals in different size fractions of compost from solid urban wastes. Environetal Technology Letter. 10, pp. 521 – 526.
  24. Polowczyk, I., Bastrzyk, A., Sawiński, W., Koźlecki, T., Rudnicki, P., Sadowski, Z. & Sokołowski, A. (2010). Sorption properties of fly ash from coal burning. Chemical Engineering and Apparatus, 49(1), pp. 93–94.
  25. Poluszyńska. J. & Ślęzak, E. (2015). Characteristics of biomass incineration ashes and the assessment of their possible use for natural purposes. Scientific Works of Institute of Ceramics and Building Materials. 23, pp. 71-78.
  26. Renbo, Y., Wing-Ping, L. & Pin-Han, W. (2012). Basic characteristics of leachate produced by various washing processes for MSWI ashes in Taiwan, Journal of Environmental Management, 104, pp. 67-76.
  27. Rodríguez, N. H., Ramírez, S. M., Varela, M. B., Guillem, M., Puig, J., Larrotcha, E. & Flores, J. (2010). Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement and Concrete Research, 40(5), pp. 778-786.
  28. Rosik-Dulewska, Cz. (2001). The content of fertilizer ingredients and heavy metals with their fractions in municiapl waste composts. Problem Journals of Advances in Agricultural Sciences 477, pp. 467-477.
  29. Sánchez-Chardi, A. (2016). Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb). Atmospheric Environment, 131, pp. 352-359.
  30. Sørum, L., Frandsen-Flemming, J. & Hustad, J. E. (2008). On the fate of heavy metals in municipal solid waste combustion part I: devolatilisation of heavy metals on the grate. Fuel, 82 (18) pp. 2273–2283.
  31. Struis, R.P.W., Ludwig, C., Lutz, H. & Scheidegger A.M. (2004). Speciation of zinc in municipal solid waste incinerator fly ash after heat treatment: an X-ray absorption spectroscopy study. Environmental Science and Technology, 38, pp. 3760–3767.
  32. Szarek, Ł. (2020). Leaching of heavy metals from thermal treatment municipal sewage sludge fly ashes. Archives of Environmental Protection, 46, 3, pp. 49-59, DOI:10.24425/aep.2020.134535.
  33. Szarek, Ł., Falaciński P. & Wojtkowska, M. (2018). Immobilization of selected heavy metals from fly ash from thermal treatment of municipal sewage sludge in hardening slurries, Archives of Civil Engineering, 64, 3, pp.131-144. DOI:10.2478/ace-2018-0034.
  34. Szarek, Ł. & Wojtkowska, M. (2018). Properties of fl y ash from thermal treatment of municipal sewage sludge in terms of EN 450-1. Archives of Environmental Protection 44, 1, pp. 63–69. DOI:10.24425/118182.
  35. Teixeira, S. R., Santos, G. T. A., Souza, A. E., Alessio, P., Souza, S. A. & Souza, N. R. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Applied Clay Science, 53(4), pp. 561-565.
  36. Ure, A.M., Davidson, C.M. & Thomas, R.P. (1995). Single and sequential extraction schemes for tracę metal speciation in soil and sediment, Techniąues and Instruinentation in Analytical Chemistry, 17, pp. 505-523.
  37. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013a). An overview of the composition and application of biomass ash. Part 1.Phase–mineral and chemical composition and classification. Fuel, 105, pp. 40–76.
  38. Vassilev, S., Baxter, D., Andersen, L. & Vassileva, C. (2013b). An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, pp. 19-39.
  39. Wojtkowska, M. & Bogacki, J. (2012). Use of Speciation Analysis for Monitoring Heavy Metals in the Bottom Sediments of the Utrata River‎, Environmental Protection, 34, 4, pp. 43-46.
  40. Woodard, C. (2006). Industrial Waste Treatment Handbook. Second Edition, Elselvier, USA.
  41. Wzorek, Z. (2008). Recovery of phosphorous compounds from thermally processed waste and their application as a substitute for natural phosphorous raw materials. Kraków, Publishing House of the Cracow University of Technology.
Go to article

Authors and Affiliations

Paweł Falaciński
1
ORCID: ORCID
Małgorzata Wojtkowska
1

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Strength and permeability properties along with microstructural evolution of hardened slurries composed of fly ash from fluidal bed combustion of brown coal and an addition of OPC/BFSC is assessed in this paper. An increase in the amount of fly ash in slurries influences the development of mechanical strength and a decrease of hydraulic conductivity. SEM, XRD, and porosity analyses confirmed formation of watertight microstructures. The structure of slurries is composed of ettringite, C-S-H phase, AFt, and AFm phases. Ettringite crystallises as relatively short needles forming compact clusters or intermixed with the C-S-H phase. The occurring C-S-H phases are mainly of type I – fibrous and type II – honeycomb

Go to article

Authors and Affiliations

Z. Kledyński
P. Falaciński
A. Machowska
J. Dyczek
Ł. Kotwica
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the kinetics of the binding process of self-hardening moulding sands with an organic binder under conditions of forced air flow at various pressure values. Three moulding sands made using urea-furfuryl resin Furanol FR75A technology were studied. The moulding sands were prepared on a base of quartz sand with an average grain size of dL = 0.25, 0.29 and and 0.37 mm , with permeability values of 306 , 391 and and 476 m 2/10 8Pa ∙ s (for ρ0 = 1.60 , 1.60 and and 1.61 g/cm 3, respectively). The research was conducted for a resin content of 1% with a constant proportion of hardener to resin, which was equal to 50%. Samples of the tested moulding sands were blown with air at pressures of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bar. The kinetics of the hardening process was monitored using ultrasound technology, according to a previously developed methodology [1]. The research was carried out on an ultrasound testing station equipped with a temperature chamber and an airflow reducer. The tests were conducted at a temperature of 20°C, and of the air flow pressure on the changes in ultrasonic wave velocity in the hardening mouldins sand as a function of time, the kinetics of the hardening process, and the degree of moulding sand hardening were determined. Additionally, the influence of the moulding sand permeability on the course of the hardening process at a constant air flow pressure was determined.
Go to article

Bibliography

[1] Zych, J. (2007). Synthesis of the applications of ultrasonic technology in the analysis of the kinetics of selected processes occurring in molding materials. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163, Kraków. (in Polish).
[2] Holtzer, M., Kmita, A. & Roczniak, A. (2014). New furfuryl resins more environmentally friendly. Archives of Foundry Engineering. 14(spec.4), 51-54. (in Polish).
[3] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Akapit. (in Polish).
[4] Lewandowski, J.L (1971). Molding materials. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[5] Dobosz, St.M. (2006). Water in molding and core sands. Kraków: Wydawnictwo Akapit. (in Polish).
[6] Drożyński, D. (1999). Post-surface phenomena in the process of binding masses in the classic cold-box technology. Unpublished doctoral dissertation, AGH Univesity of Science and Technology, Kraków. (in Polish).
[7] Lewandowski, J.L. (1991). Molding and core sands. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[8] Jamrozowicz, Ł., Kolczyk, J. & Kaźnicva, N. (2016). Study of the hardening kinetics of self-hardening masses at low temperature. Prace Instytutu Odlewnictwa. LVI, 4/2016, 379-390. (in Polish).
[9] Matonis, N. & Zych, J. (2022). Plasticity changes of moulding sands with chemical binders caused by increasing the hardenin degree. Archives od Foundry Engineering. 22(2), 71-76. DOI: 10.24425/afe.2022.140227.
[10] Zych, J. (1999). Patent Nr PL 192202 B1. Kraków
Go to article

Authors and Affiliations

Natalia Matonis
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The numerical algorithm of thermal phenomena is based on the solution of the heat conduction equations in Petrov-Galerkin’s formula using the finite element method. In the modeling of phase transformation in the solid state, the models based on the diagrams of continuous heating and continuous cooling (CHT and CCT). In the modeling of mechanical phenomena, equations of equilibrium and constitutive relationships were adopted in the rate form. It was assumed that the hardened material is elastic-plastic, and the plasticizing can be characterized by isotropic, kinematic or mixed strengthening. In the model of mechanical phenomena besides thermal, plastic and structural strains, the transformations plasticity was taken into account. Thermo-physical size occurring in the constitutive relationship, such as Young’s modulus and tangential modulus, while yield point depend on temperature and phase composition of the material. The modified Leblond model was used to determine transformation plasticity. This model was supplemented by an algorithm of modified plane strain state, advantageous in application to the modeling of mechanical phenomena in slender objects. The problem of thermoelasticity and plasticity was solved by the FEM. In order to evaluate the quality and usefulness of the presented numerical models, numerical analysis of temperature fields, phase fractions, stresses and strains was performed, i.e. the basic phenomena accompanying surface layer of progressive-hardening with a movable heat source of slender elements made of tool steel for cold work.

Go to article

Authors and Affiliations

T. Domański
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the research results of the influence of the precipitation hardening on hardness and microstructure of selected Al-Si and Al-Cu alloys obtained as 30 mm ingots in a horizontal continuous casting process. The ingots were heat treated in process of precipitation hardening i.e. supersaturation with subsequent accelerated or natural ageing. Moreover in the range of the study it has been carried out investigations of chemical constitution, microscopic metallographic with use of scanning electron microscope with EDS analysis system, and hardness measurements using the Brinell method. On basis of obtained results it has been concluded that the chemical constitution of the investigated alloys enables to classify them into Al alloys for the plastic deformation as EN AW-AlSi2Mn (alternatively cast alloy EN AC-AlSi2MgTi) and as EN AW-AlCu4MgSi (alternatively cast alloy EN AC-AlCu4MgTi) grades. Moreover in result of applied precipitation hardening has resulted in the precipitation from a supersaturated solid solution of dispersive particles of secondary phases rich in alloying element i.e. Si and Cu respectively. In consequence it has been obtained increase in hardness in case of AlSi2Mn alloy by approximately 30% and in case of AlCu4MgSi alloy by approximately 20% in comparison to the as-cast state of continuous ingots.
Go to article

Authors and Affiliations

T. Wróbel
P.M. Nuckowski
P. Jurczyk
Download PDF Download RIS Download Bibtex

Abstract

The high mechanical properties of the Al-Li-X alloys contribute to their increasingly broad application in aeronautics, as an alternative forthe aluminium alloys, which have been used so far. The aluminium-lithium alloys have a lower specific gravity, a higher nucleation andcrack spread resistance, a higher Young’s module and they characterize in a high crack resistance at lower temperatures. The aim of theresearch planned in this work was to design an aluminium alloy with a content of lithium and other alloy elements. The research includedthe creation of a laboratorial melt, the microstructure analysis with the use of light microscopy, the application of X-ray methods to identify the phases existing in the alloy, and the microhardness test.
Go to article

Authors and Affiliations

J. Augustyn-Pieniążek
S. Rzadkosz
H. Adrian
M. Choroszyński
Download PDF Download RIS Download Bibtex

Abstract

The contributions of work-hardening of austenite and the presence of martensite on the hardening of an AISI 304L stainless steel were evaluated based on plastic deformation under different reductions in thickness at two rolling temperatures. The cold deformation temperatures of 300 K and 373 K were chosen to induce strain-hardening plus strain-induced martensitic transformation in the former and strain-hardening in the latter. This made it possible to elucidate the real effects of strengthening mechanisms of metastable austenitic stainless steels during mechanical working.

Go to article

Authors and Affiliations

T. Mirzaie
H. Mirzadeh
M. Naghizadeh
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors present the approach to modelling of austenitic steel hardening basing on the Frederick-Armstrong’s rule and Chaboche elastic-plastic material model with mixed hardening. Non-linear uniaxial constitutive equations are derived from more general relations with the assumption of an appropriate evolution of back stress. The aim of the paper is to propose a robust and efficient identification method of a well known material model.

A typical LCF strain-controlled test was conducted for selected amplitudes of total strain. Continuous measurements of instant stress and total strain values were performed. Life time of a specimen, signals amplitudes and load frequency were also recorded.

Based on the measurement, identification of constitutive equation parameters was performed. The goal was to obtain a model that describes, including hardening phenomenon, a material behaviour during the experiment until the material failure. As a criterion of optimisation of the model least square projection accuracy of the material response was selected.

Several optimisation methods were examined. Finally, the differential evolution method was selected as the most efficient one. The method was compared to standard optimisation methods available in the MATLAB environment. Significant decrease of computation time was achieved as all the optimisation procedures were run parallel on a computer cluster.

Go to article

Authors and Affiliations

Łukasz Maciejewski
Wojciech Myszka
Grażyna Ziętek
Download PDF Download RIS Download Bibtex

Abstract

Based on laboratory tests of selected properties of secondary waste (ashes and dusts) from municipal waste incineration plants, the possibility of recovering some properties of waste in the process of filling the post-mining voids in the salt mine was assessed. The furnace bottom ash and the waste from the flue gas treatment from one of the national incineration plants were examined. The grain curves of dry waste and the density of the prepared mixtures were characterized. Twelve variants of the compositions of ash-based mixtures with varying proportions of the individual components were considered, taking into account both fresh water and brine. For each variant of the composition, the amount of redundant liquid appeared as well as the time of solidifying of the mixture to a certain strength and the compressibility values obtained. Considering the possibility of transporting mixtures in mines by means of pipelines at relatively long distances, and allowing the filling of large salt chambers to be filled and evenly filled, flow parameters were determined. In addition, the permeability of solidified waste samples was investigated, showing the potential for reducing the strength of the waste mass due to the action of water or brine. The technical feasibility of eliminating redundant liquid in the binding process has been confirmed, which is particularly important in salt mines. Preliminary values for the amount of binder (5%÷10%) to be added to the mixtures to obtain the specified strength properties of the artificially formed mass at Rc = 0.5 MPa. Attention was paid to the important practical aspect resulting from the rapid increase of this type of waste in the comming years in Poland and at the same time vast potential for their use in salt mining, where we have a huge capacity of salt chambers available.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Waldemar Korzeniowski
Katarzyna Poborska-Młynarska
Download PDF Download RIS Download Bibtex

Abstract

The study presents methods to be used for improving the performance parameters of car engine pistons made of EN AC-AlSi12CuNiMg alloy according to the PN-EN 1706: 2011. Pistons of slow sucking and turbocharged engines were researched. A solution heat and ageing treatments were applied according to four variants. Temperatures of the solution heat treatment were: 550 ±5°C; 510°C ±5°C; and alternate: 276 ±5°C/510 ±5°C. The solution time ranged from 6 min to 4 h. Temperatures of the ageing heat treatment were 20°C and 250°C, while the ageing time ranged from 1,5 to 3h. Natural ageing was performed in 5 days. Measurements of hardness HRB and the piston diameters were performed. An improvement in the performance parameters of combustion engines was observed. Three solution heat treatment and ageing variants, allowed to obtain the pistons with hardness equal/higher than pistons of the turbocharged engines. The test results confirmed the possibility of providing a piston with properties exceeding the high load parameters specified by the manufacturer. Further studies will make it possible to improve the effects of the proposed solutions.
Go to article

Bibliography

[1] Stone, R. (2012). Introduction to Internal Combustion Engines. Fourth Edition, SAE and Macmillan.
[2] Heywood, J.B. (2018). Internal Combustion Engines Fundamentals, Second Edition, McGraw-Hill Education.
[3] Kirkpatrick, A.T. (2020). Internal Combustion Engines: Applied Thermosciences. Fourth Edition, John Wiley & Sons.
[4] Bosch, R. (2018). Automotive Handbook. 10th Edition: Robert Bosch GmbH
[5] Siemińska-Jankowska, B. & Pietrowski, S. (2003). The effects of temperature on strength of the new piston aluminum materials. Journal of KONES Internal Combustion Engines. 10(1-2), 237-250.
[6] Wajand, A., Wajand, J. (2005). Reciprocating internal combustion engines. Wydawnictwa Naukowo Techniczne PWN. (in Polish).
[7] Manasijevic, S., Pavlovic-Acimovic, Z., Raic, K., Radisa, R. & Kvrgi´c, V. (2013). Optimisation of cast pistons made of Al–Si piston alloy. International Journal of Cast Metals Research. 26(5), 255-261.
[8] Javidani, M. & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158.
[9] Pietrowski, S. (2001) Silumins. Łódź: Wydawnictwo Politechniki Łódzkiej. (in Polish).
[10] Poniewierski, Z. (1989). Crystallization, Structure and Mechanical Properties of Silumins. Warszawa: WNT. (in Polish).
[11] Kaufman, J.G., Rooy, E.L. (2004). Aluminum Alloy Castings: Properties, Processes and Applications. ASM International.
[12] Zolotorevsky, V.S., Belov, N.A., Glazoff, M.V. (2007). Casting Aluminium Alloys. Elsevier: Oxford, UK, pp. 327-376.
[13] Pezda, J. (2015). The effect of the T6 head treatment on change of mechanical properties of the AlSi12CuNiMg alloy modified with strontium. Archives of Metallurgy and Materials. 60(2), 627-632.
[14] Czekaj, E., Fajkiel, A. & Gazda, A. (2005). Short-lived ultrahigh temperature silicon spheroidization treatment of silumins. Archiwum Odlewnictwa. 5(17), 51-68. (in Polish).
[15] Dobrzański, L.A., Reimann, L. & Krawczyk, G. (2008). Influence of the ageing on mechanical properties of the aluminium alloy AlSi9Mg. Archives of Materials Science and Engineering. 31, 37-40.
[16] Pezda, J. (2010). Heat treatment of EN AC-AlSi13Cu2Fe silumin and its effect on change of hardness of the alloy. Archives of Foundry Engineering. 10(1), 131-134.
[17] Pezda, J. (2014). Effect of a selected heat treatment parameters on technological quality of a silumin-cast machinery components; Bielsko-Biała: ATH Scientific Publishing House: Bielsko-Biała, Poland.
[18] Pezda, J. & Jarco, A. (2016). Effect of T6 heat treatment parameters on technological quality of the AlSi7Mg alloy. Archives of Foundry Engineering. 16(4), 95-100.
[19] Czekaj, E., Kwak, Z., Garbacz-Klempka, A. (2017). Comparison of impact of immersed and micro-jet cooling during quenching on microstructure and mechanical properties of hypoeutectic silumin AlSi7Mg0.3. Metallurgy and Foundry Engineering. 43(3), 153-168.
[20] Pezda, J. & Jezierski, J. (2020). Non-standard T6 heat treatment of the casting of the combustion engine cylinder head. Materials. 13(18), 4114.
[21] Jarco, A. & Pezda, J. (2021). Effect of heat treatment process and optimization of its parameters on mechanical properties and microstructure of the AlSi11(Fe) alloy. Materials (Basel) 14(9), 2391.
[22] Nikitin, K.V., Chikova, O.A., Amosov, E.A. & Nikitin, V.I. (2016). Shortening the time of heat treatment of silumins of the Al – Si – Cu system by modifying their structure. Metal Science and Heat Treatment. 58(7), 400-404.
[23] Prudnikov, A., Prudnikov, V. (2019). The mode of hardening heat treatment for deformable piston hypereutectic silumins. International Scientific Journal Materials science. Non-equilibrium phase transformations. 5(3), 74-77.
[24] Kantoríková, E., Kuriš, M. & Pastirčák, R. (2021). Heat treatment of AlSi7Mg0.3 Aluminium alloys with increased zirconium and titanium content. Archives of Foundry Engineering. 21(2), 89-93.
[25] Kuriš, M., Bolibruchova, D. M., Matejka M. & Kantoríková, E. (2021). Effect of the precipitation hardening on the structure of AlSi7Mg0.3Cu0.5 alloy with addition of Zr and combination of Zr and Ti. Archives of Foundry Engineering. 21(1), 95-100.
[26] Rychter, T., Teodorczyk, A. (2006). Theory of piston engines. Wydawnictwa Komunikacji i Łączności. (in Polish).

Go to article

Authors and Affiliations

M. Trepczyńska-Łent
1
ORCID: ORCID
K. Műller
2

  1. Mechanical Engineering Faculty, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  2. Bergerat Monnoyeur Sp. z o.o. – Caterpillar, Poland
Download PDF Download RIS Download Bibtex

Abstract

In view of the permanent increase of the municipal solid waste incineration (MSWI) residues amount,

the numerous attempts to find a way of their recovery have been undertaken. In this paper the idea of the

recovery of the MSWI residues in Kłodawa salt mine is presented. The idea is to fill the waste in underground

workings, close and/or backfill the underground excavations with self-solidifying mixture prepared

on the basis of MSWI grained solid residues. Two techniques are proposed: 1) hydraulic backfill technique

(HBT) where the mixture is prepared in the surface installation and pumped down into the underground

workings through shaft and the pipelines and 2) dry waste technique (DWT), where dry grained waste is

dropped into the mine by pneumatic pipeline transport, then supplied to the underground mixture-preparing-

installation and pumped as a thin liquid or paste into the selected workings. The description of the

technology is preceded by general characteristic of the hardening backfill in underground mines and by

characteristic of MSWI residues, drafted on the basis of the literature review.

Go to article

Authors and Affiliations

Waldemar Korzeniowski
Krzysztof Skrzypkowski
Katarzyna Poborska-Młynarska
Download PDF Download RIS Download Bibtex

Abstract

This article presents test results for hydraulic conductivity and porosity structure of hardening slurries prepared of Portland cement, betonite, water and fluidal ashes from the combustion of hard and brown coal. The slurries were exposed to persistent filtering action (180 days) of liquids chemically aggressive to cement binders, i.e. distilled water, 0.5% solution of nitric acid, 1% solution of sodium sulphate, 1% solution of magnesium nitrate and 1% solution of ammonium nitrate. Samples exposed to filtration of tap water constituted the reference base. The research was into relations between hydraulic conductivity and pore structure parameters in slurries, as well as into the influence of the type of aggressive medium on leak tightness of slurries (their porosity and hydraulic conductivity).

Go to article

Authors and Affiliations

Paweł Falaciński
Download PDF Download RIS Download Bibtex

Abstract

This article presents ways of possible utilization and application of fl uidal combustion wastes as active additives to hardening slurries which are used to seal environment protection structures, i.e. cut-off walls in waste dumps and wastewater treatment plants. Cut-off walls are often exposed to fi ltrating action of eluates - polluted (aggressive) waters. Results of hydraulic conductivity tests of slurries after their long-term (210 days) fi ltration with eluates from a municipal waste dump and with tap water are presented. Porosity tests were also conducted to show the porosity structure of the fi ltered slurries. Additionally, compressive strength of slurries maturing in tap water and waste dump eluates was tested in parallel.
Go to article

Authors and Affiliations

Paweł Falaciński
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an attempt is made to explain the previously observed increased effectiveness of utilising hydrated sodium water-glass grade

137 after hardening moulding sands with selected physical methods. In the modified process of preparing sandmixes, during stirring

components, water as a wetting additive was introduced to the sand-binder system. Presented are examination results of influence of faster

microwave heating and slower traditional drying of the so-prepared moulding sands on their tensile and bending strength, calculated per

weight fraction of the binder. The measurement results were confronted with SEM observations of linking bridges and with chemical

analyses of grain surfaces of high-silica base. On the grounds of comprehensive evaluation of hardened moulding sands, positive effects

were found of the applied physical process of binder dehydration and presence of the wetting additive. It was observed that introduction of

this additive during stirring, before adding the binder, improves flowing the binder to the places where durable linking bridges are created.

It was also found that the applied methods of hardening by dehydration enable creation of very durable linking bridges, strongly connected

with the sand base, which results in damages of high-silica grain surfaces, when the bridges are destroyed.

Go to article

Authors and Affiliations

M. Stachowicz
K. Granat
Ł. Pałyga
Download PDF Download RIS Download Bibtex

Abstract

Measurements of the hardening process of the selected self-setting sands are presented in the hereby paper. Moulding sands were prepared

on the matrix of „Szczakowa” sand of the Sibelco Company. Two resins: phenol-formaldehyde-furfuryl (FF/AF) and urea-formaldehydefurfuryl

(MF/AF) were used for making moulding sands. – Methylbenzene-sulphonic acid was applied as a hardener for the moulding sand

on FF/AF resin, while paratoluene-sulphonic acid for the moulding sand on MF/AF resin. Both hardeners were used in two concentrations:

low – the so-called ‘slow’ hardener and high - ‘fast’ hardener. During investigations, the courses of the hardening process were

determined, more accurately changes of the velocity of the ultrasound wave passage through the moulding sand cL = f(t) and changes of

the moulding sand hardening degree versus time, Sx = f(t). In addition, the kinetics of the hardening process was determined.

Measurements were performed on the research stand for ultrasound investigations.

Go to article

Authors and Affiliations

Ł. Jamrozowicz
J. Kolczyk
N. Kaźnica
Z. Pyziak
Download PDF Download RIS Download Bibtex

Abstract

This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid) or poly(sodium acrylate)/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.
Go to article

Authors and Affiliations

B. Grabowska
A. Bobrowski
K. Kaczmarska
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the

greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron

grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and

quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in

hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.

Go to article

Authors and Affiliations

T. Szykowny
M. Trepczyńska-Łent
T. Giętka
Ł. Romanowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents results of heat treatment on the high chromium cast iron. The study was carrying out on samples cut from the casting

made from chromium cast iron. Those were hardened at different temperatures, then tempered and soft annealed. The heat treatment was

performed in a laboratory chamber furnace in the Department of Engineering Alloys and Composites at Faculty of Foundry Engineering

AGH. At each stage of the heat treatment the hardness was measured by Vickers and Rockwell methods, and the microscope images were

done. Additionally based on images from the optical microscope the microstructure was assessed. Based on these results, the effect of

hardening, tempering and soft annealing on the microstructure and hardness of high chromium cast iron was studied. Next the effects of

different hardening temperatures on the properties of high chromium cast iron were compared. The study led to systemize the literature

data of the parameters of heat treatment of high chromium cast iron, and optimal conditions for heat treatment was proposed for casts of

similar properties and parameters.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
D. Siekaniec
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

Grey cast iron belongs to materials for casting production, which have wide application for different industry branches. Wide spectrum of

properties of these materials is given by the structure of base metal matrix, which can be influenced with heat treatment. Processes of

annealing can be applied for grey cast iron without problems. During heat treatment processes, where higher cooling rates are used, the

thermal and structural strains become important. Usage and conditions of such heat treatment for grey cast iron castings of common

production are the subject of evaluation of this article.

Go to article

Authors and Affiliations

Š. Eperješi
J. Malik
I. Vasková
D. Fecko
Download PDF Download RIS Download Bibtex

Abstract

The article takes into consideration the researches concerning inserting the Glassex additive to the microwaved-hardened and selfhardened moulding sands with water glass. In the research different types of ester hardeners to self-hardened moulding sands with water glass were used. The influence of Glassex additive on retained strength of moulding sands with different hardeners and prepared by different technologies of hardening were tested. The influence of different hardeners and the technology of hardening on retained strength of moulding sand with water glass and the Glassex additive were also estimated.

Go to article

Authors and Affiliations

J. Jakubski
K. Major-Gabryś
M. Stachowicz
St.M. Dobosz
D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Measurements of the hardening process course of the selected self-hardening moulding sands with the reclaimed material additions to the matrix, are presented in the hereby paper. Moulding sands were produced on the „Szczakowa” sand (of the Sibelco Company) as the matrix of the main fraction FG 0,40/0,32/0,20, while the reclaim was added to it in amounts of 20, 50 and 70%. Regeneration was performed with a horizontal mechanical regenerator capacity of 10 t/h. In addition, two moulding sands, one on the fresh sand matrix another on the reclaimed matrix, were prepared for comparison. Highly-fluid urea-furfuryl resin was used as a binder, while paratoluensulphonic acid as a hardener. During investigations the hardening process course was determined, it means the wave velocity change in time: cL = f(t). The hardening process kinetics was also assessed (dClx/dt = f(t)). Investigations were carried out on the research stand for ultrasound tests. In addition strength tests were performed.

Go to article

Authors and Affiliations

Ł. Jamrozowicz
J. Kolczyk
P. Wojtuń
Download PDF Download RIS Download Bibtex

Abstract

The results of studies of W-Ni-Co-Fe experimental alloy, with chemical composition assuring a possibility of producing Ni-based supersaturated solid solution are presented. The alloy was prepared from tungsten, nickel, cobalt and iron powders which were first mixed then melted in a ceramic crucible where they slowly solidified in hydrogen atmosphere. Next specimens were cut from the casting and heated at a temperature 950o C. After solution treatment the specimens were water quenched and then aged for 20 h at a temperature 300o C. The specimens were subjected to microhardness measurements and structure investigations. The latter included both conventional metallography and SEM observations. Moreover, for some specimens X-ray diffractometry studies and TEM investigations were conducted. It was concluded that quenching lead to an increase of tungsten concentration in nickel matrix which was confirmed by Ni lattice parameter increase. Aging of supersaturated solid solution caused strengthening of the Ni-based matrix, which was proved by hardness measurements. The TEM observation did not yield explicit proofs that the precipitation process could be responsible for strengthening of the alloy.
Go to article

Authors and Affiliations

M. Kaczorowski
P. Skoczylas
A. Krzyńska
J. Kaniewski
Download PDF Download RIS Download Bibtex

Abstract

Fuzzy logic determination of the material hardening parameters based on the Heyer’s method was applied in this research. As the fuzzy input variables, the length of two measuring bases and the maximum force registered in the Heyer’s test were used. Firstly, the numerical experiment (the simulation of the fuzzification of the input data) with the assumed disturbance of input variables was performed. Next, on the basis of experimental investigations (eleven samples made from the same material), the membership functions associated with the input data were created. After that, the fuzzy analysis was examined. Fuzzy material hardening constants obtained by means of the α-level optimization and the extension principle methods were compared. Discrete values of the hardening data are found in the defuzzification process, by application of the mass center method.

Go to article

Authors and Affiliations

A. Skrzat
M. Wójcik
Ł. Bąk

This page uses 'cookies'. Learn more