Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.
Go to article

Authors and Affiliations

Piotr Krawczyk
Krzysztof Badyda
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to investigate the heat and mass transfer during thermal decomposition of a single solid fuel particle. The problem regards the pyrolysis process which occurs in the absence of oxygen in the first stage of fuel oxidation. Moreover, the mass transfer during heating of the solid fuels is the basic phenomenon in the pyrolysis-derived alternative fuels (gas, liquid and solid phase) and in the gasification process which is focused on the generation of syngas (gas phase) and char (solid phase). Numerical simulations concern pyrolysis process of a single solid particle which occurs as a consequence of the particle temperature increase. The research was aimed at an analysis of the influence of particle physical properties on the devolatilization process. In the mathematical modeling the fuel grain is treated as an ideal sphere which consists of porous material (solid and gaseous phase), so as to simplify the final form of the partial differential equations. Assumption that the physical properties change only in the radial direction, reduces the partial derivatives of the angular coordinates. This leads to obtaining the equations which are only the functions of the radial coordinate. The model consists of the mass, momentum and energy equations for porous spherical solid particle heated by the stream of hot gas. The mass source term was determined in the wide range of the temperature according to the experimental data. The devolatilization rate was defined by the Arrhenius formula. The results of numerical simulation show that the heating and devolatilization time strongly depend on the physical properties of fuel. Moreover, proposed model allows to determine the pyrolysis process direction, which is limited by the equilibrium state.

Go to article

Authors and Affiliations

Izabela Wardach-Święcicka
Dariusz Kardaś
Download PDF Download RIS Download Bibtex

Abstract

Postharvest processing of grain is an important step in the overall grain production process. It makes possible not only quantitative and qualitative preservation of the harvest, but also ensures maximum profit from its sale at the most favorable market conditions. Convective heat treatment (drying, cooling) guarantees commercial harvest conservation, prevents its loss, and in some cases improves the quality of the finished product. The necessity of intensification and automation of technological processes of postharvest grain processing requires the development of methods of mathematical modeling of energy-intensive processes of convective heat treatment. The determination and substantiation of optimum modes and parameters of equipment operation to ensure the preservation of grain quality is possible only when applying mathematical modeling techniques. In this work, a mathematical model of particulate material drying is presented through a system of differential equations in partial derivatives of which the variable in time and space relationship between heat and mass transfer processes in the material and a drying agent is reflected. The aim of the research was to determine the dynamics of the interrelated fields of unsteady temperature and moisture content of the material and the drying agent on the basis of mathematical models of heat and mass transfer in the layer of particulate material in convective heat approach or heat retraction. The implementation of the mathematical model proposed in the standard mathematical set allows analyzing efficiency of machines and equipment for the convective heat treatment of particulate agricultural materials in a dense layer, according the determinant technological parameters and operating modes.
Go to article

Authors and Affiliations

Boris Kotov
Roman Kalinichenko
Anatoliy Spirin
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the algorithms for a flue gas/water waste-heat exchanger with and without condensation of water vapour contained in flue gas with experimental validation of theoretical results. The algorithms were used for calculations of the area of a heat exchanger using waste heat from a pulverised brown coal fired steam boiler operating in a power unit with a capacity of 900 MWe. In calculation of the condensing part, the calculation results obtained with two algorithms were compared (Colburn-Hobler and VDI algorithms). The VDI algorithm allowed to take into account the condensation of water vapour for flue gas temperatures above the temperature of the water dew point. Thanks to this, it was possible to calculate more accurately the required heat transfer area, which resulted in its reduction by 19 %. In addition, the influence of the mass transfer on the heat transfer area was taken into account, which contributed to a further reduction in the calculated size of the heat exchanger - in total by 28% as compared with the Colburn-Hobler algorithm. The presented VDI algorithm was used to design a 312 kW pilot-scale condensing heat exchanger installed in PGE Belchatow power plant. Obtained experimental results are in a good agreement with calculated values.

Go to article

Authors and Affiliations

Paweł Rączka
Kazimierz Wójs
Download PDF Download RIS Download Bibtex

Abstract

Heat transfer is an irreversible process. This article defines the entropy increment as a measure of energy degradation in heat transfer realized in typical surface heat exchangers. As an example of the proposed entropy increase method, presented below are the calculations for heat exchangers working in a typical Clausius-Rankine cycle. The entropy increase in such exchangers inevitably leads to increased fuel consumption and, as a further consequence, to increased carbon dioxide emission.

Go to article

Authors and Affiliations

Zbigniew Drożyński
Download PDF Download RIS Download Bibtex

Abstract

The characteristic of nano sized particles mass flux conditions are engaged in this investigation. Here we assume that the nano sized particle flux is zero and the nano sized particle fraction arranged itself on the boundary layer. With this convincing and revised relation, the features of Buongiorno relation on three-dimensional flow of Carreau fluid can be applied in a more efficient way. The governing partial differential equations of continuity, momentum, energy and concentration equations which are transmitted into set of pair of nonlinear ordinary differential equations utilizing similar transformations. The numeric solutions are acquired by engaging the bvp4c scheme, which is a finite-difference code for solving boundary value problems. A parametric study is accomplished to demonstrate the impact of Prandtl number,Weissenberg numbers, radiation parameter, chemical reaction parameter, thermophoresis parameter, Brownian motion parameter and Lewis number on the fluid velocity, temperature and concentration profiles as well skin friction coefficient, Nusselt number and Sherwood number within the boundary layer. From this we find the way in which magnetic parameter contributes to the increase in local skin fraction, and the decrease in the Nusselt and Sherwood numbers in these cases. The effects of the velocity temperature and concentration profile are obtained and presented graphically.

Go to article

Authors and Affiliations

B. Madhusudhana Rao
Degavath Gopal
Naikoti Kishan
Saad Ahmed
Putta Durga Prasad
Download PDF Download RIS Download Bibtex

Abstract

Efficiency of agitation was considered for different physical systems on the basis of our own experimental studies on homogenisation, heat and mass transfer as well as gas hold-up. Measurements were performed for different physical systems: Newtonian liquids of low and higher viscosity, pseudoplastic liquid, gas–liquid and gas–solid–liquid systems agitated in vessels of the working volume from 0.02 m3 to 0.2 m3. Agitated vessels of different design were equipped with a high-speed impeller (10 impellers were tested). Comparative analysis of the experimental results proved that energy inputs (power consumption) should be taken into account as a very important factor when agitation efficiency is evaluated in order to select a proper type of equipment. When this factor is neglected in the analysis, intensification of the process can be estimated only.
Go to article

Bibliography

Busciglio A., Opletal M., Moucha T., Montante G., Paglianti A., 2017. Measurement of gas hold-up distribution in stirred vessels equipped with pitched blade turbines by means of Electrical Resistance Tomography. Chem. Eng. Trans., 57, 1273–1278. DOI: 10.3303/CET1757213.

Cudak M., 2016. Experimental and numerical analysis of transfer processes in a biophase–gas–liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa.

Cudak M., 2020. The effect of vessel scale on gas hold-up in gas–liquid systems. Chem. Process Eng., 41, 4, 241–256. DOI: 10.1515/cpe-2016-0005.

Cudak M., Galego Zarosa R., Lopez Vazquez I., Karcz J., 2019. An effect of different factors on the production of mechanically agitated multiphase biophase–gas–liquid systems. Chem. Eng. Trans., 74, 1021–1026. DOI: 10.3303/CET1974171.

Cudak M., Kiełbus-R˛apała A., Major-Godlewska M., Karcz J., 2016. Influence of different factors on momentum transfer in mechanically agitated multiphase systems. Chem. Process Eng., 37, 41–53. DOI: 10.1515/cpe-2016-0005.

Harnby N., Edwards M.F., Nienow A.W., 1997. Mixing in the process industries. Butterworth Co Ltd, London.

Kamienski J., 2004. Agitation of multiphase systems (in Polish), WNT, Warszawa.

Karcz J., Cudak M., 2002. Efficiency of the heat transfer process in a jacketed agitated vessel equipped with an eccentrically located impeller. Chem. Pap., 56, 6, 382–386.

Karcz J., Cudak M., Szoplik J., 2005. Stirring of a liquid in a stirred tank with an eccentrically located impeller. Chem. Eng. Sci., 60, 2369–2380. DOI: 10.1016/j.ces.2004.11.018.

Karcz J., Major M., 2001. Experimental studies of heat transfer in an agitated vessel equipped with vertical tubular coil (in Polish). Inz. Chem. i Proc., 22, 445–459.

Kiełbus-Rąpała A., 2006. The studies of transfer processes in a mechanically agitated three-phase liquid–gas–solid system (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.

Kiełbus-Rąpała A., Karcz J., 2009. Influence of suspended solid particles on gas–liquid mass transfer coefficient in a system stirred by double impellers. Chem. Pap., 63, 2, 188–196. DOI: 10.2478/s11696-009-0013-y.

Kiełbus-Rąpała A., Rapisarda A., Karcz J., 2019. Experimental analysis of conditions of gas–liquid–floating particles system production in an agitated vessel equipped with two impellers. Chem. Eng. Trans., 74, 1027–1032. DOI: 10.3303/CET1974172.

Kracik T., Petricek R., Moucha T., 2020. Mass transfer in coalescent batch fermenters with mechanical agitation. Chem. Eng. Res. Des., 160, 587–592. DOI: 10.1016/j.cherd.2020.03.015.

Kuncewicz Cz., 2012. Mixing of high viscosity liquids: Process principles (in Polish). Łódz University of Technology, Łódz.

Lee B.W., Dudukovic M.P., 2014. Determination of flow regime and gas hold-up in gas–liquid stirred tanks. Chem. Eng. Sci., 109, 264–275. DOI: 10.1016/j.ces.2014.01.032.

Littlejohns J.V., Daugulis A.J., 2007. Oxygen transfer in a gas–liquid system containing solids of varying oxygen affinity. Chem. Eng. J., 129, 67–74. DOI: 10.1016/j.cej.2006.11.002.

Major-Godlewska M., Karcz J., 2018. Power consumption for an agitated vessel equipped with pitched blade turbine and short baffles. Chem. Pap., 72, 1081–1088. DOI: 10.1007/s11696-017-0346-x.

Michalska M., 2001. Heat transfer in a stirred tank equipped with the vertical tubular coil and rotating agitator (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.

Nagata S., 1975. Mixing. Principles and applications, Kodansha Ltd. Tokyo. Novak V., Rieger F., 1994. Mixing in unbaffled vessel. 8th European Conference on Mixing, Cambridge, 21– 23.09.1994, ICHEME Symposium Series, 136, 511–518.

Oldshue J.Y., 1983. Fluid mixing technology. McGraw-Hill, New York.

Ozkan O., Calimli A., Berber R., Oguz H., 2000. Effect on inert solid particles at low concentrations on gas–liquid mass transfer in mechanically agitated reactors. Chem. Eng. Sci., 55, 2737–2740. DOI: 10.1016/S0009-2509(99)00532-1.

Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing: Science and Practice. Wiley.

Petera K., Dostal M., Verisova M., Jirout T., 2017. Heat transfer at the bottom of a cylindrical vessel impinged by a swirling flow from an impeller in a draft tube. Chem. Biochem. Eng. Q., 31, 343–352. DOI: 10.15255/CABEQ.2016.1057.

Petricek R., Moucha T., Rejl F.J., Valenz L., Haidl J., Cmelikova T., 2018. Volumetric mass transfer coefficient, power input and gas hold-up in viscous liquid in mechanically agitated fermenters. Measurements and scale-up. Int. J. Heat Mass Transf., 124, 1117–1135. DOI: 10.1016/j.ijheatmasstransfer.2018.04.045.

Rosa V.S., Torneiros D.L.M., Maranhão H.W.A., Moraes M.S., Taqueda M.E.S., Paiva J.L., de Moraes Júnior D., 2020. Heat transfer and power consumption of Newtonian and non-Newtonian liquids in stirred tanks with vertical tube baffles. Appl. Therm. Eng., 176, 115355, 1–24. DOI: 10.1016/j.applthermaleng.2020.115355.

Stręk F., 1981. Agitation and agitated vessels (in Polish). WNT, Warszawa.

Szoplik J., 2004. The studies of the mixing time in a stirred tank with an eccentrically located impeller (in Polish). PhD thesis, Technical University of Szczecin, Szczecin.

Szoplik J., Karcz J., 2005. An efficiency of the liquid homogenization in agitated vessels equipped with off-centred impeller. Chem. Pap., 59, 6a, 373–379.

Tatterson G.B., 1991. Fluid mixing and gas dispersion in agitated tanks. McGraw Hill Inc, Tokyo.

Zwietering T.N., 1958. Suspending of solids particles in liquid by agitation. Chem. Eng. Sci., 8, 244–253. DOI: 10.1016/0009-2509(58)85031-9.
Go to article

Authors and Affiliations

Joanna Karcz
1
Jolanta Szoplik
1
ORCID: ORCID
Marta Major-Godlewska
1
Magdalena Cudak
1
Anna Kiełbus-Rapała
1

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, al. Piastów 42, 71-065 Szczecin, Poland

This page uses 'cookies'. Learn more