Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper is a summary of the results of research on the accumulation conditions of the Upper Younger Loess (LMg) in Poland and Bug loess (bg) in Ukraine from the maximum stage (MIS 2) of the Vistulian (Weichselian) Glaciation in central and eastern Europe. These studies included an analysis of the morphological (topographic) situation of the loess cover, its grain size and heavy mineral composition, the preserved structures of loess sedimentation as well as mollusc and pollen analyses of this loess. They revealed that the accumulation of Upper Younger Loess (UYL) might have been more dependent on the prevailing moisture conditions than previously thought. These conditions could have been caused by cold air masses from an ice sheet and warm air masses from the Mediterranean Sea and Atlantic coming together in the Carpathians and the Holy Cross Mountains and favouring the formation of dust storms and precipitation. In this process, a loading of loess dust (formed from local rocks weathering in periglacial conditions) by atmospheric moisture particles was especially significant. The moist substrate not only favoured the periodic development of vegetation and molluscs but also enabled the interception of dust and the accumulation of an increasingly thick loess cover. Westerly and south-westerly winds predominated in the UYL as indicated by the topographic position of loess patches and the mineral composition of the studied loess. Periodically an increased air circulation from the east and northeast occurred.
Go to article

Authors and Affiliations

Jan Dzierżek
1
Leszek Lindner
1
Roman Chlebowski
1
Marcin Szymanek
1
Andryi Bogucki
2 3
Olena Tomeniuk
2 3

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  2. Ivan Franko National University of Lviv, Department of Geomorphology and Palaeogeography, Doroshenka 41, 79000 Lviv, Ukraine
  3. National Academy of Sciences of Ukraine, I. Krypiakevych Institute of Ukrainian Studies, Vynnychenka 24, 79008 Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The newly discovered mid-Campanian Szozdy Delta System (Roztocze Hills, SE Poland) located in the southern part of the Polish Cretaceous Basin, at the northern edge of the Łysogóry-Dobrogea Land, has revealed interesting features concerning the relationship between the abundance of rutile and tourmaline. A distinct inverse relationship between rutile and tourmaline can be readily recognised in the succeeding units of the tripartite cyclothems (calcareous mudstone, calcareous sandstone, and calcareous gaize) representing the submarine part of the Szozdy Delta System. In the Szozdy section, both minerals are of similar shape (highly rounded), durability, and size; they are, however, characterised by markedly different densities. Therefore, it might be expected that these two mineral phases will be strongly dependent, both vertically and spatially, on the local energy of the sedimentary environment hydrodynamic power that existed during the deposition of the succeeding units of the cyclothems. The lighter tourmaline was likely transported further to the more quiescent prodelta environment, rendering the prodelta facies overrepresented in this mineral, whereas the heavier rutile was deposited closer to the river discharge. Such relative change in the abundance of these two mineral phases, emphasised by a standardised Z-score statistics, is referred here to as rutile to tourmaline index (RuTidx). Accordingly, as the RuTidx increases, the hydrodynamic power in the sedimentary environment increases as well. Since these two mineral phases are comparatively immune to alteration during the sedimentary cycle, the RuTidx is considered here to be an independent tool in recognising the hydrodynamics of the depositional environments of any age.
Go to article

Authors and Affiliations

Michał Cyglicki
1
Zbigniew Remin
2

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  2. Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The potential of heavy minerals as a provenance tracer in Albian arenites of extra-Carpathian Poland was assessed. Studies in this area have focused on various methods based on heavy mineral chemistry that provide an effective tool for reconstructing the provenance of quartz-rich sediments. The previously suggested division of the study area into two domains with different source areas: the western domain – the Miechów area, and the eastern domain – the Lublin area, was based on geochronological (monazite and muscovite dating) and rutile mineral chemical studies. The mineral chemistry of newly examined heavy minerals supports the previously suggested division. The mineral chemistry of detrital tourmaline suggests medium-grade metamorphic rocks as the main source in both domains. Detrital garnet in the western domain shows affiliation to the Góry Sowie Massif, while garnet in the eastern domain was most probably sourced from southern/central Norway. The western domain was most probably fed from rocks of the Bohemian Massif. The main source area for the eastern domain was most probably located in the Baltic Shield. The distinct division of the study area into two domains was caused by the palaeogeography of the region in the Albian and the action of longshore currents in south-eastward and eastward directions.

Supplementary Material 1
Supplementary Online Material 2






Go to article

Authors and Affiliations

Jakub Kotowski
1
Danuta Olszewska-Nejbert
1
Krzysztof Nejbert
1

  1. University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, 02-089 Warszawa, Poland

This page uses 'cookies'. Learn more