Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Measurements of hydrogen solubility in various nitrobenzene-aniline mixtures were conducted in an autoclave reactor with a stirrer and control of temperature. The solubility of hydrogen was measured at 7 different values of temperature (30 °C, 40 °C, 50 °C, 90 °C, 130 °C, 170 °C, 210 °C, respectively), 3 values of stirrer rotation speed (1200 rpm, 1600 rpm, 2000 rpm, respectively) and a range of pressure of 20 ‒ 30 bar. Moreover, pure aniline, pure nitrobenzene and their mixtures with different concentrations were used. In the next step, values of Henry’s constant were calculated. Based on experimental data a dependence of Henry’s constant on temperature for pure aniline and pure nitrobenzene was proposed. Additionally, for each temperature correlations between Henry’s constant and aniline’s concentration in mixture of nitrobenzene-aniline were found.

Go to article

Authors and Affiliations

Paweł Sobieszuk
Aleksandra Srebniak
Manfred Kraut
Oliver Görke
Download PDF Download RIS Download Bibtex

Abstract

Thermodynamic principles for the dissolution of gases in ionic liquids (ILs) and the COSMO-SAC model are presented. Extensive experimental data of Henry’s law constants for CO2, N2 and O2 in ionic liquids at temperatures of 280-363 K are compared with numerical predictions to evaluate the accuracy of the COSMO-SAC model. It is found that Henry’s law constants for CO2 are predicted with an average relative deviation of 13%. Both numerical predictions and experimental data reveal that the solubility of carbon dioxide in ILs increases with an increase in the molar mass of ionic liquids, and is visibly more affected by the anion than by the cation. The calculations also show that the highest solubilities are obtained for [Tf2N]ˉ. Thus, the model can be regarded as a useful tool for the screening of ILs that offer the most favourable CO2 solubilities. The predictions of the COSMOSAC model for N2 and O2 in ILs differ from the pertinent experimental data. In its present form the COSMO-SAC model is not suitable for the estimation of N2 and O2 solubilities in ionic liquids.

Go to article

Authors and Affiliations

Manfred Jaschik
Daniel Piech
Krzysztof Warmuzinski
Jolanta Jaschik

This page uses 'cookies'. Learn more