Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The full-length cDNA of LeTIR1 gene was isolated from tomato with EST-based in silico cloning followed by RACE amplification. LeTIR1 contained an open reading frame (ORF) 1872 bp long, encoding 624 amino acid residues. The predicted protein LeTIR1 had one F-box motif and eleven leucine-rich repeats (LRRs), all of which are highly conserved in TIR1 proteins of other plant species. Phylogenetic analysis showed that the LeTIR1 protein shared high similarity with other known TIR1 proteins. Both sequence and phylogenetic analysis suggested that LeTIR1 is a TIR1 homologue and encodes an F-box protein in tomato. Semi-quantitative RT-PCR indicated that LeTIR1 was expressed constitutively in all organs tested, with higher expression in stem than root, leaf, flower and fruit. Its expression level was positively correlated with the auxin distribution in stem or axillary shoot, and was induced by spraying exogenous IAA.

Go to article

Authors and Affiliations

Yu Qiao
Xiao-Ming Feng
Chun-Xiang You
Ze-Zhou Liu
Shuang-Shuang Wang
Yu-Jin Hao
Download PDF Download RIS Download Bibtex

Abstract

Tubercle disease or a bacterial pocket disease of sugar beets are names used to describe one of the gall-malformed diseases of sugar beet roots. Xanthomonas beticola is the historical name of the pathogen supposedly causing bacterial pocket disease. There were no isolates deposited in any collection corresponding to the originally isolated bacteria, except two strains from the NCPPB (National Collection of Plant Pathogenic Bacteria, UK). However, both isolates were identified as related to Bacillus pumilus, which raised doubts about their pathogenicity. In our laboratory, greenhouse, and preliminary field experiments, we demonstrated that such strains are not pathogenic to sugar beets. Furthermore, both strains promoted their growth, improved their yield quality, and partly protected them against Rhizoctonia solani in a field experiment.
Go to article

Authors and Affiliations

Małgorzata B. Nabrdalik
1
Ewa B. Moliszewska
1

  1. Institute of Environmental Engineering and Biotechnology, Opole University, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

Coexisting microorganisms are abundant in nature. Plant growth promoting rhizobacteria (PGPR) is a group of beneficial microorganism living around the roots of plants which are able to confer beneficial effects on plant growth. Streptomyces sp. is a gram-positive bacteria as PGPR that can promote plant growth and enhance tolerance in adverse environment. This research was aimed to study the effects of plant growth promotion and stress tolerance of Streptomyces sp. in Arabidopsis and Brassica sp. The amount of indole-acetic acid (IAA) and phosphate solubility were assessed from isolated bacterial. Plant growth promotion was examined in 10-days old seedling with three independent experiments. Our results showed that Streptomyces sp. produced moderate levels of IAA and it was able to solubilize phosphate. Inoculation of Streptomyces sp. enhanced lateral root number, fresh weight and chlorophyll content in Arabidopsis thaliana. Moreover, the inoculation of Streptomyces sp. significantly increased vegetative growth on Arabidopsis and Brassica sp. by producing higher fresh weight and chlorophyll content. Streptomyces sp. also enhanced tolerance to abiotic stress in Arabidopsis and Brassica sp. by increasing fresh weight under condition of salt and heat stress. Under salt stress, inoculation of Streptomyces sp. in Arabidopsis induced activity of catalase enzyme and decreased hydrogen peroxide (H2O2) and malondialdehyde (MDA) production. In the molecular levels, Streptomyces sp. induced protein accumulations in Arabidopsis including nitrogen assimilation (GS1), carbohydrate metabolism (cFBPase), and the light-harvesting chlorophyll (Lhcb1) protein.

Go to article

Authors and Affiliations

Windy Manullang
Huey-wen Chuang
Download PDF Download RIS Download Bibtex

Abstract

The effects of a microbial inoculant (Thervelics®: a mixture of cells of Bacillus subtilis C-3102 and carrier materials) on rice (Oryza sativa cv. Milkyprincess) and barley (Hordeum vulgare cv. Sachiho Golden) were evaluated in four pot experiments. In the first and second experiments, the dry matter production of rice and barley increased significantly by 10–20% with the inoculation of the mixture at a rate of 107 cfu ⋅ g–1 soil compared with the non-inoculated control. In the third experiment, the growth promoting effects of the mixture, the autoclaved mixture and the carrier materials were compared. The dry mater production of rice grains was the highest in the mixture, and it was significantly higher in the three treatments than in the control, suggesting that the carrier materials may also have a plant growth promoting effect and the living cells might have an additional stimulatory effect. To confirm the efficacy of the living cells in the mixture, only B. subtilis C-3102 cells were used in the fourth experiment. In addition, to estimate the mechanisms in growth promotion by B. subtilis C-3102, three B. subtilis strains with similar or different properties in the production of indole-3-acetic acid (IAA), protease and siderophore and phosphatesolubilizing ability were used as reference strains. Only B. subtilis C-3102 significantly increased the dry matter production of rice grains and the soil protease activity was consistently higher in the soil inoculated with B. subtilis C-3102 throughout the growing period. These results indicate that the microbial inoculant including live B. subtilis C-3102 may have growth promoting effects on rice and barley.

Go to article

Authors and Affiliations

Abdul Saleem Jamily
Yuki Koyama
Thida Aye Win
Koki Toyota
Seiya Chikamatsu
Takeshi Shirai
Taisuke Uesugi
Hiroaki Murakami
Tetsuya Ishida
Takaomi Yasuhara

This page uses 'cookies'. Learn more