Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper expounds relevant results of some of the present author’s experi- ments defining the strapdown IMU sensors’ errors and their propagation into and within DGPS/IMU. In order to deal with this problem, the author conducted both the laboratory and field-based experiments. In the landborne laboratory the stand-alone Low-Cost IMU MotionPak MKII was verified in terms of the accelerometer bias, scale factor, gyroscope rotation parameters and internal temperature cross-correlations. The waterborne field-trials based on board dedicated research ships at the lake and at the busy small sea harbour were augmented by the landborne ones. These experiments conducted during the small, average, and high dynamics of movement provided comparative sole- GPS, stand-alone DGPS and integrated DGPS/IMU solution error analysis in terms of the accuracy and the smoothness of the solution. This error estimation was also carried on in the context of the purposely-erroneous incipient DGPS/IMU initialisation and alignment and further in the circumstances of on-flight alignment improvement in the absence of the signal outages. Moreover, the lake-waterborne tests conducted during extremely low dynamics of movement informed about the deterioration of the correctly initialised DGPS/IMU solution with reference to the stand-alone DGPS solution and sole- GPS solution. The above-mentioned field experiments have checked positively the DGPS /MKI research integrating software prepared during the Polish/German European Union Research Project and modified during the subsequent Project supported by the Polish Committee for Scientific Research.
Go to article

Authors and Affiliations

Krzysztof K. Vorbrich
Download PDF Download RIS Download Bibtex

Abstract

The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned

aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for airborne

MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability

for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global

navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics,

a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment

problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse impacts

of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed

alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement outliers,

which has a significant performance improvement compared with its traditional counterparts.

Go to article

Authors and Affiliations

Dingjie Wang
Yi Dong
Qingsong Li
Jie Wu
Yule Wen
Download PDF Download RIS Download Bibtex

Abstract

The utmost limit performance of interband cascade detectors optimized for the longwave range of infrared radiation is investigated in this work. Currently, materials from the III–V group are characterized by short carrier lifetimes limited by Shockley-Read-Hall generation and recombination processes. The maximum carrier lifetime values reported at 77 K for the type-II superlattices InAs/GaSb and InAs/InAsSb in a longwave range correspond to ∼200 and ∼400 ns. We estimated theoretical detectivity of interband cascade detectors assuming above carrier lifetimes and a value of ∼1–50 μs reported for a well-known HgCdTe material. It has been shown that for room temperature the limit value of detctivity is of ∼3–4×1010 cmHz1/2/W for the optimized detector operating at the wavelength range ∼10 μm could be reached.

Go to article

Authors and Affiliations

K. Hackiewicz
Piotr Martyniuk
ORCID: ORCID
Jarosław Rutkowski
ORCID: ORCID
Tetiana Manyk
ORCID: ORCID
J. Mikołajczyk
Download PDF Download RIS Download Bibtex

Abstract

The sensitivity of III-V-based infrared detectors is critically dependent upon the carrier concentration and mobility of the absorber layer, and thus, accurate knowledge of each is required to design structures for maximum detector performance. Here, measurements of the bulk in-plane resistivity, in-plane mobility, and carrier concentration as a function of temperature are reported for non-intentionally doped and Si-doped mid-wave infrared InAs0.91Sb0.09 alloy and InAs/InAs0.65Sb0.35 type-II superlattice materials grown on GaSb substrates. Standard temperature- and magnetic-field-dependent resistivity and the Hall measurements on mesa samples in the van der Pauw configuration are performed, and multi-carrier fitting and modelling are used to isolate transport of each carrier species. The results show that up to 5 carrier species of the surface, interface and bulk variety contribute to conduction, with bulk electron and hole mobility up to 2·105 cm2/V s and 8·103 cm2/V s, respectively and background dopant concentration levels were between 1014 and 1015 cm−3. The in-plane mobility temperatures dependence is determined and trends of each carrier species with temperature and dose are analysed.
Go to article

Authors and Affiliations

Christian P. Morath
1
ORCID: ORCID
Lilian K. Casias 
2
ORCID: ORCID
Gilberto A. Umana-Membreno 
3
ORCID: ORCID
Preston T. Webster
1
Perry C. Grant 
1
ORCID: ORCID
Diana Maestas
1
Vincent M. Cowan
1
ORCID: ORCID
Lorenzo Faraone 
3
ORCID: ORCID
Sanjay Krishna 
4
ORCID: ORCID
Ganesh Balakrishnan
5
ORCID: ORCID

  1. U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  2. Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87185, USA
  3. School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 25 Fairway, Crawley WA 6009, Australia
  4. Department of Electrical Engineering, The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
  5. Center for High Technology Materials, University of New Mexico, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
Download PDF Download RIS Download Bibtex

Abstract

The work presents doping characteristics and properties of high Si−doped InGaAs epilayers lattice−matched to InP grown by low pressure metal−organic vapour phase epitaxy. Silane and disilane were used as dopant sources. The main task of investigations was to obtain heavily doped InGaAs epilayers suitable for usage as plasmon−confinement layers in the construction of mid−infrared InAlAs/InGaAs/InP quantum−cascade lasers (QCLs). It requires the doping concentration of 1×1019 cm–3 and 1×1020 cm–3 for lasers working at 9 μm and 5 μm, respectively. The electron concentration increases linearly with the ratio of gas−phase molar fraction of the dopant to III group sources (IV/III). The highest electron concentrations suitable for InGaAs plasmon−contact layers of QCL was achieved only for disilane. We also observed a slight influence of the ratio of gas−phase molar fraction of V to III group sources (V/III) on the doping efficiency. Structural measurements using high−resolution X−ray diffraction revealed a distinct influence of the doping concentration on InGaAs composition what caused a lattice mismatch in the range of –240 ÷ –780 ppm for the samples doped by silane and disilane. It has to be taken into account during the growth of InGaAs contact layers to avoid internal stresses in QCL epitaxial structures.

Go to article

Authors and Affiliations

B. Ściana
M. Badura
W. Dawidowski
K. Bielak
D. Radziewicz
D. Pucicki
A. Szyszka
K. Żelazna
M. Tłaczała
Download PDF Download RIS Download Bibtex

Abstract

A robust Kalman filter improved with IGG (Institute of Geodesy and Geophysics) scheme is proposed and used to resist the harmful effect of gross error from GPS observation in PPP/INS (precise point positioning/inertial navigation system) tightly coupled positioning. A new robust filter factor is constructed as a three-section function to increase the computational efficiency based on the IGG principle. The results of simulation analysis show that the robust Kalman filter with IGG scheme is able to reduce the filter iteration number and increase efficiency. The effectiveness of new robust filter is demonstrated by a real experiment. The results support our conclusion that the improved robust Kalman filter with IGG scheme used in PPP/INS tightly coupled positioning is able to remove the ill effect of gross error in GPS pseudorange observation. It clearly illustrates that the improved robust Kalman filter is very effective, and all simulated gross errors added to GPS pseudorange observation are successfully detected and modified.

Go to article

Authors and Affiliations

Zengke Li
Yifei Yao
Jian Wang
Jingxiang Gao
Download PDF Download RIS Download Bibtex

Abstract

The design and performance analysis of a 1310/1550-nm wavelength division demultiplexer with tapered geometry based on InP/InGaAsP multimode interference (MMI) coupler has been carried out. Wavelength response of demultiplexer of conventional MMI and tapered input and tapered output (tapered I/O) waveguides geometry of the MMI have been discussed. The demultiplexing function has been first performed by choosing a suitable refractive index of the guiding region and geometrical parameters such as the width and length of MMI structure have been achieved. Access width of tapered I/O waveguides have been adjusted to give a low insertion loss (IL) and high extinction ratio (ER) for the considered wavelengths of 1310 nm and 1550 nm. The total size of the demultiplexer has been significantly reduced over the existing MMI devices. Numerical simulations with finite difference beam propagation method are applied to design and optimize the operation of the proposed demultiplexer.

Go to article

Authors and Affiliations

D. Chack
V. Kumar
S.K. Raghuwanshi
Download PDF Download RIS Download Bibtex

Abstract

The paper reports on the barrier mid-wave infrared InAs/InAsSb (xSb = 0.4) type-II superlattice detector operating below thermoelectrical cooling. AlAsSb with Sb composition, xSb = 0.97; barrier doping, ND < 2×1016 cm−3 leading to valence band offset below 100 meV in relation to the active layer doping, ND = 5×1015 cm−3 was proved to be proper material not introducing extra barrier in valence band in the analyzed temperature range in XBn architectures. The detectivity of the simulated structure was assessed at the level of ∼ 1011 Jones at T ∼ 100 K assuming absorber thickness, d = 3 μm. The detector’s architecture for high frequency response operation, τs = 420 ps (T ∼ 77 K) was presented with a reduced active layer of d = 1 μm.

Go to article

Authors and Affiliations

Piotr Martyniuk
ORCID: ORCID
Krystian Michalczewski
ORCID: ORCID
T.Y. Tsai
C.H. Wu
Y.R. Wu
Download PDF Download RIS Download Bibtex

Abstract

The paper presents noise measurements in low-resistance photodetectors using a cross-correlation-based transimpedance amplifier. Such measurements usually apply a transimpedance amplifier design to provide a current fluctuation amplification. In the case of low-resistance sources, the measurement system causes additional relevant system noise which can be higher than noise generated in a tested detector. It mainly comes from the equivalent input voltage noise of the transimpedance amplifier. In this work, the unique circuit and a three-step procedure were used to reduce the floor noise, covering the measured infrared detector noise, mainly when operating with no-bias or low-bias voltage. The modified circuit and procedure to measure the noise of unbiased and biased detectors characterized by resistances much lower than 100 Ω were presented. Under low biases, the reference low-resistance resistors tested the measurement system operation and techniques. After the system verification, noise characteristics in low-resistance InAs and InAsSb infrared detectors were also measured.
Go to article

Bibliography

  1. Vandamme, L. J. Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Electron. Devices. 41, 2176–2187 (1994). https://doi.org/10.1109/16.333839
  2. Kotarski, M. & Smulko, J. M. Noise measurement set-ups for fluctuations-enhanced gas sensing. Metrol. Meas. Syst. 16, 457–464 (2009). http://www.metrology.pg.gda.pl/full/2009/M&MS_2009_457.pdf
  3. Jones, B. Electrical noise as a reliability indicator in electronic devices and components. IEE Proc. G 149, 13–22 (2002). https://doi.org/10.1049/ip-cds:20020331
  4. Dyakonova, N., Karandashev, S. , Levinshtein, M .E., Matveev, B. A. & Remennyi, M. A. Low frequency noise in p-InAsSbP / n-InAs infrared photodiodes. Semicond. Sci. Technol. 33, 065016 (2018). https://doi.org/10.1088/1361-6641/aac15d
  5. Ciura, L., Kolek, A., Michalczewski, K., Hackiewicz, K. & Martyniuk, P. 1/f noise in InAs/InAsSb superlattice photoconductors. IEEE Trans. Electron Devices. 67, 3205–3210 (2020). https://doi.org/10.1109/TED.2020.2998449
  6. Savich, G. , Pedrazzani, J. R., Sidor, D. E., Maimon, S. & Wicks, G. W. Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99, 121112 (2011). https://doi.org/10.1063/1.3643515
  7. Cervera, C. et al. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
  8. Ciofi, C., Giusi, G., Scandurra, G. & Neri, B. Dedicated instrumentation for high sensitivity, low frequency noise measurement systems. Noise Lett. 4, L385–L402 (2004). https://doi.org/10.1142/S0219477504001963
  9. Horowitz, P. & Hill, W. The Art of Electronics (Cambridge University Press, 2015).
  10. Achtenberg, K. et al. Low-frequency noise measurements of IR photodetectors with voltage cross correlation system. Measurement 183, 109867 (2021). https://doi.org/10.1016/j.measurement.2021.109867
  11. Ciura, Ł., Kolek, A., Gawron, W., Kowalewski, A. & Stanaszek, D. Measurements of low frequency noise of infrared photodetectors with transimpedance detection system. Meas. Syst. 21,
    461–472 (2014). https://doi.org/10.2478/mms-2014-0039
  12. Giusi, G., Pace, C. & Crupi, F. Cross-correlation-based trans-impedance amplifier for current noise measurements. J. Circ. Theor. Appl. 37, 781–792 (2008). https://doi.org/10.1002/cta.517
  13. Jaworowicz, K., Ribet-Mohamed, I., Cervera, C., Rodriguez, J. & Christol, P. Noise characterization of midwave infrared InAs/GaSb superlattice pin photodiode. IEEE Photon. Technol. 23, 242–244 (2011). https://doi.org/10.1109/lpt.2010.2093877
  14. Taalat, R., Christol, P. & Rodriguez, J. Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain. Electron. Mater. 41, 2714–2718 (2012). https://doi.org/10.1007/s11664-012-2035-4
  15. Ramos, D. et al. 1/f noise and dark current correlation in midwave InAs/GaSb Type-II superlattice IR detectors. Status Solidi A. 218, 2000557 (2020). https://doi.org/10.1002/pssa.202000557
  16. De Iacovo, A., Venettacci, C., Colace, L. & Foglia, S. Noise performance of PbS colloidal quantum dot photodetectors. Phys. Lett. 111, 211104 (2017). https://doi.org/10.1063/1.5005805
  17. Rais, M. et al. HgCdTe photovoltaic detectors fabricated using a new junction formation technology. Microelectron. J. 31, 545–551 (2000). https://doi.org/10.1016/s0026-2692(00)00028-8
  18. Achtenberg, K., Mikołajczyk, J., Ciofi, C., Scandurra, G. & Bielecki, Z. Low-noise programmable voltage source. Electronics 9, 1245 (2020). https://doi.org/10.3390/electronics9081245
Go to article

Authors and Affiliations

Krzysztof Achtenberg 
1
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Zbigniew Bielecki
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this paper ∼16 μm-emitting multimode InP-related quantum cascade lasers are presented with the maximum operating temperature 373 K, peak and average optical power equal to 720 mW and 4.8 mW at 303 K, respectively, and the characteristic temperature (T0) 272 K. Two types of the lasers were fabricated and characterized: the lasers with a SiO2 layer left untouched in the area of the metal-free window on top of the ridge, and the lasers with the SiO2 layer removed from the metal-free window area. Dual-wavelength operation was obtained, at λ ∼ 15.6 μm (641 cm−1) and at λ ∼ 16.6 μm (602 cm−1) for lasers with SiO2 removed, while within the emission spectrum of the lasers with SiO2 left untouched only the former lasing peak was present. The parameters of these devices like threshold current, optical power and emission wavelength are compared. Lasers without the SiO2 layer showed ∼15% lower threshold current than these ones with the SiO2 layer. The optical powers for lasers without SiO2 layer were almost twice higher than for the lasers with the SiO2 layer on the top of the ridge.

Go to article

Authors and Affiliations

A. Szerling
S. Slivken
M. Razeghi
Download PDF Download RIS Download Bibtex

Abstract

The authors report two approaches, the first based on growth of lattice matched InGaAs/GaAsSb superlattice on InP substrate with tunable bandgap in the 2 to 3 µm range. The second approach is based on bulk random alloy InGaAsSb, which is tunable from 1.7 µm to 4.5 µm and lattice matched to the GaSb lattice constant. In each case, detector structures were fabricated and characterised. The authors have assessed the performance of these materials relative to commercially available extended short wave infrared devices through comparison to IGA-Rule 17 dark current performance level. A complementary barrier structure used in the InGaAsSb design showed improved quantum efficiency. The materials compare favourably to commercial technology and present additional options to address the challenging extended short wave infrared spectral band.
Go to article

Authors and Affiliations

Everett D. Fraser
1
Jiayi Shao
1
Paul W. Frensley
1
Beau D. Barnes
1
Kevin P. Clark
1
Yung-Chung Kao
1
Paul R. Pinsukanjana
1

  1. Intelligent Epitaxy Technology, Inc. 1250 E. Collins Blvd., Richardson, TX 75081, USA
Download PDF Download RIS Download Bibtex

Abstract

Designing of a nanoscale Quantum Well (QW) heterostructure with a well thickness of ∼60 Å is critical for many applications and remains a challenge. This paper has a detailed study directed towards designing of In0.29Ga0.71As0.99N0.01/GaAs straddled nanoscale-heterostructure having a single QW of thickness ∼60 Å and optimization of optical and lasing characteristics such as optical and mode gain, differential gain, gain compression, anti-guiding factor, transparency wavelength, relaxation oscillation frequency (ROF), optical power and their mutual variation behavior. The outcomes of the simulation study imply that for the carrier concentration of ∼2 × 1018cm−3 the optical gain of the nano-heterostructure is of 2100 cm−1 at the wavelength is of 1.30 μm. Though the obtained gain is almost half of the gain of InGaAlAs/InP heterostructure, but from the wavelength point of view the InGaAsN/GaAs nano-heterostructure is also more desirable because the 1.30 μm wavelength is attractive due to negligible dispersion in the silica based optical fiber. Hence, the InGaAsN/GaAs nano-heterostructure can be very valuable in optical fiber based communication systems.

Go to article

Authors and Affiliations

K. Sandhya
G. Bhardwaj
R. Dolia
P. Lal
S. Kumar
S. Dalela
F. Rahman
P.A. Alvi
Download PDF Download RIS Download Bibtex

Abstract

The hierarchical structure of InSe<β-CD<FeSO4>> composition with 4-fold grade expansion was synthesized with the intercalation-deintercalation technique. Electrical properties of the structure obtained were examined using impedance and thermostimulated current spectroscopy methods. Influence of temperature, static magnetic field and illumination on electrical properties of the synthesized compound was investigated. Changes in the impurity spectrum of the expanded hierarchical structure were analyzed and extraordinary magneto- and photoimpedance behavior of InSe<β-CD<FeSO4>> at room temperature was explained.

Go to article

Authors and Affiliations

T. Popławski
I. Bordun
A. Pidluzhna
Download PDF Download RIS Download Bibtex

Abstract

Ga-free InAs/InAsSb type-II superlattice structures grown on GaSb substrates have demonstrated high performance for mid-wave infrared applications. However, realisation of long wavelength infrared photodetectors based on this material system still presents challenges, especially in terms of reduced quantum efficiency. This reduction is due, in part, to the increased type-II superlattice period required to attain longer wavelengths, as thicker periods decrease the wave-function overlap for the spatially separated quantum wells. One way to improve long wavelength infrared performance is to modify the type-II superlattice designs with a shorter superlattice period for a given wavelength, thereby increasing the wave-function overlap and the resulting optical absorption. Long wavelength infrared epitaxial structures with reduced periods have been realised by shifting the lattice constant of the type-II superlattice from GaSb to AlSb. Alternatively, epitaxial growth on substrates with orientations different than the traditional (100) surface presents another way for superlattice period reduction. In this work, the authors evaluate the performance of long wavelength infrared type-II superlattice detectors grown by molecular beam epitaxy using two different approaches to reduce the superlattice period: first, a metamorphic buffer to target the AlSb lattice parameter, and second, structures lattices matched to GaSb using substrates with different orientations. The use of the metamorphic buffer enabled a ~30% reduction in the superlattice period compared to reference baseline structures, maintaining a high quantum efficiency, but with the elevated dark current related to defects generated in the metamorphic buffer. Red-shift in a cut-off wavelength obtained from growths on high-index substrates offers a potential path to improve the infrared photodetector characteristics. Focal plane arrays were fabricated on (100), (311)A- and (211)B-oriented structures to compare the performance of each approach.
Go to article

Authors and Affiliations

Dmitri Lubyshev
1
Joel M. Fastenau
1
Michael Kattner
1
Philip Frey
1
Scott A. Nelson
1
Ryan Flick
1
Ying Wu
1
Amy W. K. Liu
1
Dennis E. Szymanski
1
Becky Martinez
2
Mark J. Furlong
2
Richard Dennis
3
Jason Bundas
3
Mani Sundaram
3

  1. IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  2. IQE, Pascal Close, St. Mellons, Cardiff, CF3 0LW, UK
  3. QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
Download PDF Download RIS Download Bibtex

Abstract

Mid-wavelength infrared detectors and focal plane array based on n-type InAs/InAsSb type-II strained layer superlattice absorbers have achieved excellent performance. In the long and very long wavelength infrared, however, n-type InAs/InAsSb type-II strained layer superlattice detectors are limited by their relatively small absorption coefficients and short growth-direction hole diffusion lengths, and consequently have only been able to achieve modest level of quantum efficiency. The authors present an overview of their progress in exploring complementary barrier infrared detectors that contain p-type InAs/InAsSb type-II strained layer superlattice absorbers for quantum efficiency enhancement. The authors describe some representative results, and also provide additional references for more in-depth discussions. Results on InAs/InAsSb type-II strained layer superlattice focal plane arrays for potential NASA applications are also briefly discussed.
Go to article

Authors and Affiliations

David Z. Ting
1
Alexander Soibel
1
Arezou Khoshakhlagh
1
Sam A. Keo
1
Sir B. Rafol
1
Anita M. Fisher
1
Cory J. Hill
1
Brian J. Pepper
1
Yuki Maruyama
1
Sarath D. Gunapala
1

  1. NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the potential of InAs/GaSb superlattice detectors for the short-wavelength infrared spectral band. A barrier detector structure was grown by molecular beam epitaxy and devices were fabricated using standard photolithography techniques. Optical and electrical characterisations were carried out and the current limitations were identified. The authors found that the short diffusion length of ~1.8 µm is currently limiting the quantum efficiency (double-pass, no anti-reflection coating) to 43% at 2.8 µm and 200 K. The dark current density is limited by the surface leakage current which shows generation-recombination and diffusion characters below and above 195 K, respectively. By fitting the size dependence of the dark current, the bulk values have been estimated to be 6.57·10−6 A/cm2 at 200 K and 2.31·10−6 A/cm2 at 250 K, which is only a factor of 4 and 2, respectively, above the Rule07.
Go to article

Authors and Affiliations

Marie Delmas
1
David Ramos
1 2
Ruslan Ivanov
1
Laura Žurauskaitė
1
Dean Evans
1
David Rihtnesberg
1
Susanne Almqvist
1
Smilja Becanovic
1
Eric Costard
1
Linda Höglund
1

  1.  IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  2. School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Go to article

Authors and Affiliations

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol
Download PDF Download RIS Download Bibtex

Abstract

The impact ionization in semiconductor materials is a process that produces multiple charge carrier pairs from a single excitation. This mechanism constitutes a possible road to increase the efficiency of the p-n and p-i-n solar cells junctions. Our study considers the structure of InN/InGaN quantum dot solar cell in the calculation. In this work, we study the effect of indium concentration and temperature on the coefficient of the material type parameter of the impact ionization process for a p(InGaN)-n(InGaN) and p(InGaN)- i(QDs-InN)-n(InGaN) solar cell. Next, we investigate the effect of perturbation such as temperature and indium composition on conventional solar cell’s (p(InGaN)-n(InGaN)) and solar cells of the third generation with quantum dot intermediate band IBSC (p(InGaN-i(QD-InN)-n(InGaN)) by analyzing their behaviour in terms of efficiency of energy conversion at the presence of the impact ionization process. Our numerical results show that the efficiency is strongly influenced by all of these parameters. It is also demonstrated that decreased with the increase of indium concentration and temperature which contributes to an overall improvement of the conversion efficiency.

Go to article

Authors and Affiliations

N. Ben Afkir
E. Feddi
J. Meziane
Y. EL Kouari
M. Zazoui
A. Migalska-Zalas
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present findings on the syntheses and study of properties of InSe<PTHQ> nanohybrid. The introduction of guest component in GaSe matrix leads to an increase in inhomogeneities, which is clearly confirmed by the strengthening of the low-frequency horizontal branch of Nyquist diagrams. A constant magnetic field counteracts this effect and changes the behavior of the impedance hodograph at low frequencies to the opposite. Illumination leads to a colossal increase in quantum capacitance, which is clearly demonstrated in the Nyquist diagram. For the synthesized InSe<PTHQ> nanohybrid the interesting behavior of the current-voltage characteristic is reported. As a result of studies of the synthesized InSe<PTHQ> nanohybrid the effect of “negative capacity” is observed, the magnitude of which can be controlled by the electric field. Based on the constructed impedance model and proposed N-barrier model, the physical mechanisms of the investigated processes are suggested.
Go to article

Authors and Affiliations

Fedir Ivashchyshyn
1
ORCID: ORCID
Vitaliy Maksymych
2
ORCID: ORCID
Dariusz Calus
1
ORCID: ORCID
Myroslava Klapchuk
2
ORCID: ORCID
Glib Baryshnikov
3
ORCID: ORCID
Rostislav Galagan
3
ORCID: ORCID
Valentina Litvin
3
ORCID: ORCID
Piotr Chabecki
1
ORCID: ORCID
Ihor Bordun
1 2
ORCID: ORCID

  1. Czestochowa University of Technology, Al. Armii Krajowej 17, Czestochowa, 42-200, Poland
  2. Lviv Polytechnic National University, Bandera Str. 12, Lviv, 79013, Ukraine
  3. Bohdan Khmelnytsky National University, blvd. Shevchnko 81, 18031, Cherkasy, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Many countries, including Indonesia, face severe water scarcity and groundwater depletion. Monitoring and evaluation of water resources need to be done. In addition, it is also necessary to improve the method of calculating water, which was initially based on a biophysical approach, replaced by a socio-ecological approach. Water yields were estimated using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. The Ordinary Least Square (OLS) and geographic weighted regression (GWR) methods were used to identify and analyze socio-ecological variables for changes in water yields. The purpose of this study was: (1) to analyze the spatial and temporal changes in water yield from 2000 to 2018 in the Citarum River Basin Unit (Citarum RBU) using the InVEST model, and (2) to identify socio-ecological variables as driving factors for changes in water yields using the OLS and GWR methods. The findings revealed the overall annual water yield decreased from 16.64 billion m3 year-1 in the year 2000 to 12.16 billion m3 year-1 in 2018; it was about 4.48 billion m3 (26.91%). The socio-ecological variables in water yields in the Citarum RBU show that climate and socio-economic characteristics contributed 6% and 44%, respectively. Land use/Land cover (LU/LC) and land configuration contribution fell by 20% and 40%, respectively.The main factors underlying the recent changes in water yields include average rainfall, pure dry agriculture, and bare land at 28.53%, 27.73%, and 15.08% for the biophysical model, while 30.28%, 23.77%, and 10.24% for the socio-ecological model, respectively. However, the social-ecological model demonstrated an increase in the contribution rate of climate and socio-economic factors and vice versa for the land use and landscape contribution rate. This circumstance demonstrates that the socio-ecological model is more comprehensive than the biophysical one for evaluating water scarcity.
Go to article

Bibliography

  1. Ambarwulan, W., Nahib, I., Widiatmaka, W., Suryanta, J., Munajati, S. L., Suwarno, Y., Turmudi T, Darmawan M. & Sutrisno, D. (2021). Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation in the Middle Citarum Sub-Watershed, Indonesia. Frontiers in Environmental Science, 9, 710570. DOI:10.3389/fenvs.2021.71057
  2. Badan Informasi Geospasial. (2015). Pemetaan Dinamika Sumberdaya Alam Terpadu Wilayah Sungai Citarum; [Mapping of the Dynamics of Integrated Natural Resources of the Citarum River Basin]; Cibinong.
  3. Bai, Y., Chen, Y., Alatalo, J.M., Yang, Z. & Jiang, B. (2020). Scale Effects on the Relationships between Land Characteristics and Ecosystem Services- a Case Study in Taihu Lake Basin, China. Sci. Total Environ., 716, DOI:10.1016/j.scitotenv.2020.137083
  4. Balai Besar Wilayah Sungai Citarum-Ciliwung (BBWS Citarum Ciliwung). Profil BBWS Citarum [Profile of BBWS Citarum]. (http://sda.pu.go.id/balai/bbwscitarum/profil-bbws-citarum/) (09.03. 2022)
  5. Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A. & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), pp. 1-14. DOI:10.1007/s13201-021-01545-8
  6. Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S. & Petitta, M. (2021). Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, 1-12. DOI:10.1007/s10653-021-01140-5
  7. Bin, L., Xu, K., Xu, X., Lian, J. & Ma, C. (2018). Development of a Landscape Indicator to Evaluate the Effect of Landscape Pattern on Surface Runoff in the Haihe River Basin. J. Hydrol, 566, pp. 546–557. DOI:10.1016/j.jhydrol.2018.09.045
  8. Borowski, P. F. (2020). Nexus between water, energy, food and climate change as challenges facing the modern global, European and Polish economy. AIMS Geosci, 6, pp. 397-421. DOI:10.3934/geosci.2020022
  9. Bucała-Hrabia, A. (2018). Land use changes and their catchment-scale environmenta limpact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geographia Polonica, 91(2), pp. 171-196. DOI:10.24425/aep.2022.140767
  10. Cao, S., Chen, L. & Yu, X. (2009). Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi‐arid agricultural regions: A case study in northern Shaanxi Province. Journal of Applied Ecology, 46(3), pp. 536-543.
  11. Caraka, R. E., Chen, R. C., Bakar, S. A., Tahmid, M., Toharudin, T., Pardamean, B. & Huang, S. W. (2020). Employing best input SVR robust lost function with nature-inspired metaheuristics in wind speed energy forecasting. IAENG Int. J. Comput. Sci, 47(3), pp. 572-584.
  12. Chander, G., Markham, B. L. & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), pp. 893-903.
  13. Deslatte, A., Szmigiel-Rawska, K., Tavares, A. F., Ślawska, J., Karsznia, I. & Łukomska, J. (2022). Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland. Land Use Policy, 114, 105937. DOI:10.1016/j.landusepol.2021.105937
  14. Dinka, M. O. & Chaka, D. D. (2019). Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of water and land development. DOI:10.2478/jwld-2019-0038
  15. Dissanayake, D., Morimoto, T. & Ranagalage, M. (2019). Accessing the Soil Erosion Rate Based on RUSLE Model for Sustainable Land Use Management: A Case Study of the Kotmale Watershed, Sri Lanka. Springer International Publishing; Vol. 5, pp. 291–306. DOI:10.1007/s40808-018-0534-x
  16. Ermida, S.L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche & Isabel F. Trigo. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 12, 1471. DOI:10.3390/rs12091471
  17. Fang, W., Huang, H., Yang, B. & Hu, Q. (2021). Factors on spatial heterogeneity of the grain production capacity in the major grain sales area in southeast China: Evidence from 530 Counties in Guangdong Province. Land, 10(2), 206. DOI:10.3390/land10020206
  18. Ferencz, B., Dawidek, J., & Bronowicka-Mielniczuk, U. (2022). Alteration of yield and springs number as an indicator of climate changes. Case study of Eastern Poland. Ecological Indicators, 138, 108798.
  19. Figueroa, A.J. & Smilovic, M. (2020). Groundwater irrigation and implication in the Nile river basin. In Global Groundwater (pp. 81-95). Elsevier. DOI:10.1016/B978-0-12-818172-0.00007-4
  20. Fotheringham, A.S., Brunsdon, C. & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; ISBN 978-0-470-85525-6.
  21. Francis, R. & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability engineering & system safety, 121, pp. 90-103.
  22. Fu, B.P. (1981). On the Calculation of the Evaporation from Land Surface. Sci. Atmos. Sin.
  23. Gentilucci, M., Bufalini, M., Materazzi, M., Barbieri, M., Aringoli, D., Farabollini, P. & Pambianchi, G. (2021). Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosci, 11, DOI:10.3390/geosciences11080348
  24. Glaser, M., Krause, G., Ratter, B. & Welp, M. (2008) Human-Nature-Interaction in the Anthropocene. Potential of Social-Ecological Systems Analysis. [Website], Available from: file:///C:/Users/USER/Downloads/10.4324_9780203123195_previewpdf.pdf
  25. (28.07.2022) DOI:10.1111/j.1365-2664.2008.01605.x
  26. Goldameir, N. E., Djuraidah, A. & Wigena, A. H. (2015). Quantile Spline Regression on Statistical Downscaling Model to Predict Extreme Rainfall in Indramayu. Applied Mathematical Sciences, 9(126), pp. 6263-6272.
  27. Gollini, I., Lu, B., Charlton, M., Brunsdon, C., Harris, P., Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. (2015). GWmodel : An R Package for Exploring Spatial Heterogeneity. J. Stat. Softw, 63, pp. 1–50, DOI:10.1080/10095020.2014.917453
  28. Gosal, A. S., Evans, P. M., Bullock, J. M., Redhead, J., Charlton, M. B., Cord, A. F. Johnson, A. & Ziv, G. (2022). Understanding the accuracy of modelled changes in freshwater provision over time. Science of the Total Environment, 833, 155042. DOI:10.1016/j.scitotenv.2022.155042
  29. Gwate, O., Dube, H., Sibanda, M., Dube, T., Chisadza, B. & Nyikadzino, B. (2022). Understanding the influence of land cover change and landscape pattern change on evapotranspiration variations in Gwayi catchment of Zimbabwe. Geocarto International, 1-17. DOI:10.1080/10106049.2022.2032386
  30. Hamel, P. & Guswa, A.J. (2015). Uncertainty Analysis of a Spatially Explicit Annual Water-Balance Model: Case Study of the Cape Fear Basin, North Carolina. Hydrol. Earth Syst. Sci, 19, pp. 839–853. DOI:10.5194/hess-19-839-2015
  31. Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos. Transactions American Geophysical Union, 14(1), pp. 446-460.
  32. Hasan, M. (2011). A policy model for sustainable water resources management of Citarum River Basin. Disertasi. Sekolahg pasca Sarjana IPb. http://repository.ipb.ac.id/handle/123456789/53626
  33. Hu, W., Li, G., Gao, Z., Jia, G., Wang, Z. & Li, Y. (2020). Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Science of the Total Environment, 733, 139423. DOI:10.1016/j.scitotenv.2020.139423
  34. Kementerian Pekerjaan Umum. Rencana pengelolaan sumber daya air Wilayah Sungai Citarum Tahun 2016 [Management Plan of Citarum River Basin]. Available online: https://www.coursehero.com/file/60545948/Rencana-Pengelolaan-Sumber-Daya-Air-WS-Citarumpdf/ (12.03.2022).
  35. Kubiak-Wójcicka, K. & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. DOI:10.3390/geosciences10080312
  36. Łabędzki, L. & Bąk, B. (2017). Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. Journal of Water and Land Development, 34(1), 181. DOI: 10.1515/jwld-2017-0052
  37. Li, P., Li, H., Yang, G., Zhang, Q. & Diao, Y. (2018). Assessing the hydrologic impacts of land use change in the Taihu Lake Basin of China from 1985 to 2010. Water, 10(11), 1512. DOI:10.3390/w10111512
  38. Li, Y., Sun, Y., Li, J. & Gao, C. (2020). Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society, 63, 102425. DOI: 10.1016/j.scs.2020.102425
  39. Lian, X. H., Qi, Y., Wang, H. W., Zhang, J. L. & Yang, R. (2019). Assessing changes of water yield in Qinghai Lake Watershed of China. Water, 12(1), 11. DOI: 10.3390/w12010011
  40. Montazar, A., Krueger, R., Corwin, D., Pourreza, A., Little, C., Rios, S. & Snyder, R.L. (2020). Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water (Switzerland), 12, DOI:10.3390/w12082253
  41. Muhammed, H. H., Mustafa, A. M. & Kolerski, T. (2021). Hydrological responses to large-scale changes in land cover of river watershed. Journal of Water and Land Development, (50). DOI:10.24425/jwld.2021.138166
  42. Nahib, I., Ambarwulan, W., Rahadiati, A., Munajati, S.L., Prihanto, Y., Suryanta, J., Turmudi, T. Nuswantoro, A.C (2021). Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustain. 13, DOI:10.3390/su13073919
  43. Nahib, I., Amhar, F., Wahyudin, Y., Ambarwulan, W., Suwarno, Y., Suwedi, N., Turmudi T, Cahyana. D., Nugroho, N.P.,Ramadhani, F., Siagian, D.R., Suryanta, J., Rudiastuti. A.W., Lumban-Gaol, Y., Karolinoerita, V., Rifaie. F. & Munawaroh, M. (2023). Spatial-Temporal Changes in Water Supply and Demand in the Citarum Watershed, West Java, Indonesia Using a Geospatial Approach. Sustainability, 15(1), 562. DOI:10.3390/su15010562
  44. Nie, Y., Avraamidou, S., Xiao, X., Pistikopoulos, E. N., Li, J., Zeng, Y. Song, F. Yu, J. & Zhu, M. (2019). A Food-Energy-Water Nexus approach for land use optimization. Science of The Total Environment, 659, pp.7-19. DOI: 10.1016/j.scitotenv.2018.12.242
  45. Pei, H., Liu, M., Shen, Y., Xu, K., Zhang, H., Li, Y. & Luo, J. (2022). Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of The Total Environment, 809, p.151153. DOI:10.1016/j.scitotenv.2021.151153
  46. Pokhrel, Y. N., Koirala, S., Yeh, P. J. F., Hanasaki, N., Longuevergne, L., Kanae, S. & Oki, T. (2015). Incorporation of groundwater pumping in a global L and Surface Model with the representation of human impacts. Water Resources Research, 51(1), pp. 78-96. DOI:10.1002/2014WR015602
  47. Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T.H. & Bullock, J. M. (2016). Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 569, pp. 1418-1426. DOI:10.1016/j.scitotenv.2016.06.227
  48. Rouholahnejad Freund, E., Abbaspour, K. C. & Lehmann, A. (2017). Water resources of the Black Sea catchment under future climate and landuse change projections. Water, 9(8), 598.
  49. Sawicka, B., Barbaś, P., Pszczółkowski, P., Skiba, D., Yeganehpoor, F. & Krochmal-Marczak, B. (2022). Climate Changes in Southeastern Poland and Food Security. Climate, 10(4), 57. DOI:10.3390/cli10040057
  50. Saxton, K.E. (2009) Soil Water Characteristics: Hydraulic Properties Calculator. Available online: https://hrsl.ba.ars.usda.gov/soilwater/Index.htm (13.02.2022)
  51. Scown, M. W., Flotemersch, J. E., Spanbauer, T. L., Eason, T., Garmestani, A. & Chaffin, B. C. (2017). People and water: Exploring the social-ecological condition of watersheds of the United States. Elementa: Science of the Anthropocene, 5. DOI:10.1525/elementa.189
  52. Septiangga, B. & Juniar, R. 2016. Aplikasi citra Landsat 8 untuk penentuan persebaran titik panas sebagai indikasi peningkatan temperatur Kota Yogyakarta. Conference paper on National Meteorologi and Climatologi, Jakarta, Indonesia, March 2016
  53. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R. & Bierbower, W. (2015). INVEST 3.1.3 User’s Guide; California US, https://invest-userguide.readthedocs.io/en/3.5.0/ (12.08.2021)
  54. Sholeh, M., Pranoto, P., Budiastuti, S. & Sutarno, S. (2018). Analysis of Citarum River Pollution Indicator Using Chemical, Physical, and Bacteriological Methods; Vol. 2049;. In AIP Conference Proceedings (Vol. 2049, No. 1, p. 020068). AIP Publishing LLC. DOI:10.1063/1.5082473
  55. Siswanto, S.Y. & Francés, F. (2019). How Land Use/Land Cover Changes Can Affect Water, Flooding and Sedimentation in a Tropical Watershed: A Case Study Using Distributed Modeling in the Upper Citarum Watershed, Indonesia. Environ. Earth Sci. 78, pp. 1–15. DOI:10.1007/s12665-019-8561-0
  56. Sriyanti, M. G. Indonesia Climate Change Sectoral Roadmap-ICCSR (Synthesis Report). FAO. 2009. 9789793764498. Jakarta: Badan Perencanaan Pembangunan Nasional, 2010
  57. Sun, Y.-J. Wang, J.-F., Zhang, R.-H., Gillies, R. R., Xue, Y. & Bo. Y.-C.(2015). Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology. 80, pp. 37–48. DOI:10.1007/s00704-004-0079-y
  58. Sun, X.Y., Guo, H.W., Lian, L., Liu, F. & Li, B. (2017). The Spatial Pattern of Water Yield and Its Driving Factors in Nansi Lake Basin. J. Nat. Resour, 32, pp. 669–679. DOI:10.11849/zrzyxb.20160460
  59. Suroso, D., Setiawan, B. & Abdurahman, O. (2010). Impact of Climate Change on the Sustainability of Water Supply in Indonesia and The 714 Proposed Adaptation Activities. Int. Symp. Exhib. Short Course Geotech. Geosynth. Eng. Challenges Oppor. Clim. Chang. 2010
  60. Szarek-Gwiazda, E. & Gwiazda, R. (2022). Impact of flow and damming on water quality of the mountain Raba River (southern Poland)‒long-term studies. Archives of Environmental Protection, 48(1), pp. 31-40. DOI:10.24425/aep.2022.140543
  61. Szwagrzyk, M., Kaim, D., Price, B., Wypych, A., Grabska, E. & Kozak, J. (2018). Impact of forecasted land use changes on flood risk in the Polish Carpathians. Natural Hazards, 94(1), pp. 227-240. DOI:10.1007/s11069-018-3384-y
  62. Szwed, M., Karg, G., Pińskwar, I., Radziejewski, M., Graczyk, D., Kędziora, A. & Kundzewicz, Z. W. (2010). Climate change and its effect on agriculture, water resources and human health sectors in Poland. Natural Hazards and Earth System Sciences, 10(8), pp. 1725-1737. DOI:10.5194/nhess-10-1725-2010, 2010.
  63. Van Paddenburg, A., Bassi, A., Buter, E., Cosslett, C. & Dean, A. A. (2012). Heart of Borneo: Investing in Nature for a Green Economy: A Synthesis Report;
  64. Wang, C., Du, S., Wen, J., Zhang, M., Gu, H., Shi, Y. & Xu, H. (2017). Analyzing Explanatory Factors of Urban Pluvial Floods in Shanghai Using Geographically Weighted Regression. Stoch. Environ. Res. Risk Assess, 31, DOI:10.1007/s00477-016-1242-6 Water 2020, 12, 11.
  65. Wei, P., Chen, S., Wu, M., Deng, Y., Xu, H., Jia, Y. & Liu, F. (2021). Using the Invest Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water (Switzerland), 13. DOI:10.3390/w13091250
  66. Worldmeter. Indonesia Water https://www.worldometers.info/water/indonesia-water/#water-use (26.05.2022)
  67. WWAP (World Water Assessment Programme). 2021. World Water Development Report Volume 4: Managing Water under Uncertainty and Risk; 2012; Vol. 1.
  68. Xu, J., Liu, S., Zhao, S., Wu, X., Hou, X., An, Y. & Shen, Z. (2019). Spatiotemporal dynamics of water yield service and its response to urbanisation in the Beiyun river Basin, Beijing. Sustainability, 11(16), 4361.
  69. Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. (2021). Spatiotemporal Changes in Vegetation Cover and Its Influencing Factors in the Loess Plateau of China Based on the Geographically Weighted Regression Model. Forests, 12. DOI:10.3390/f12060673
  70. Yang, X., Chen, R., Meadows, M.E., Ji, G. & Xu, J. (2020). Modelling Water Yield with the InVEST Model in a Data Scarce Region of Northwest China. Water Sci. Technol. Water Supply, 20, pp. 1035–1045, DOI:10.2166/ws.2020.026
  71. Young, M. & Esau, C. (Eds.). (2015). Investing in water for a green economy: Services, infrastructure, policies and management. Routledge.
  72. Yudistiro, Kusratmoko, E. & Semedi, J.M. (2019). Water Availability in Patuha Mountain Region Using InVEST Model “Hydropower Water Yield.” In Proceedings of the E3S Web of Conferences; Vol. 125. DOI:10.1051/e3sconf/2019125010
  73. Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W. & Briggs, P.R. (2004). A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res, 40, pp. 1–14, DOI:10.1029/2003WR002710
  74. Zhang, X., Zhang, G., Long, X., Zhang, Q., Liu, D., Wu, H. & Li, S. (2021). Identifying the Drivers of Water Yield Ecosystem Service: A Case Study in the Yangtze River Basin, China. Ecol. Indic, 132. DOI:10.1016/j.ecolind.2021.108304
  75. Zemełka, G., Kryłów, M. & Szalińska van Overdijk, E. (2019). The potential impact of land use changes on heavy metal contamination in the drinking water reservoir catchment (Dobczyce Reservoir, south Poland). Archives of Environmental Protection, 45(2), pp.3-11. DOI:10.24425/aep.2019.127975 ;
  76. Ziexin, H. (2020). Impact of spatial land use change on green space and water yield in Batu Pahat, Johor (Doctoral dissertation, Universiti Malaysia Kelantan).
Go to article

Authors and Affiliations

Irmadi Nahib
1
ORCID: ORCID
Wiwin Ambarwulan
1
ORCID: ORCID
Dewayany Sutrisno
1
ORCID: ORCID
Mulyanto Darmawan
1
Yatin Suwarno
1
Ati Rahadiati
1
Jaka Suryanta
1
ORCID: ORCID
Yosef Prihanto
1
Aninda W. Rudiastuti
1
Yustisi Lumban Gaol
1

  1. Research Center for Geospatial, Research Organization for Earth Sciences and Maritime,National Research and Innovation Agency, Cibinong Science Center,Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of ICP-RIE etching time using one-component plasma on various parameters of an InAs/GaSb type II superlattice matrix. In the studies, two samples used at different BCl3 gas flow rates were compared and it was found that using a lower flow rate of 7 sccm results in obtaining a smoother sidewall morphology. Next, five periodic mesa-shaped structures were etched under identical conditions, but using a different time. The results indicated that the ICP-RIE method using a BCl3 flow rate of 7 sccm, ICP:RIE power ratio of 300W:270W allowed the ICP:RIE formation of a periodic mesa-shaped structure with smooth and perpendicular sidewalls.
Go to article

Authors and Affiliations

Marta Różycka
1 2
Agata Jasik
1
ORCID: ORCID
Paweł Kozłowski
1
ORCID: ORCID
Krzysztof Bracha
1
Jacek Ratajczak
1
Anna Wierzbicka-Miernik
2

  1. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, 32/46 Lotników Avenue, 02-668, Warsaw, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Autorka artykułu analizuje wpływ twórczości Marcela Prousta na utwory dramatyczne Tennessee Williamsa, zwłaszcza na dramat Szklana menażeria, znany także z hollywoodzkiej wersji filmowej. W sztuce tej ważną rolę odgrywają Proustowskie motywy, takie jak czas, pamięć i jej mechanizmy. Podobnie jak Proust, Williams nie ukrywa w swoim utworze elementów autobiograficznych. W Szklanej menażerii zwraca również uwagę inspirowane powieścią Prousta wykorzystanie motywów muzycznych oraz doszukiwanie się podobieństw między bohaterami literackimi a postaciami z dzieł malarskich. Choć Proust nie pisał dramatów, a Williams nie zostawił po sobie żadnej powieści, to łączyła ich miłość do teatru i przekonanie, że wspomnienie jest swego rodzaju spektaklem, a scena to szczególnie odpowiednie miejsce, by opowiadać o przeszłości.
Go to article

Authors and Affiliations

Joanna Majewska
1
ORCID: ORCID

  1. Akademia Teatralna im. Aleksandra Zelwerowicza, Warszawa
Download PDF Download RIS Download Bibtex

Abstract

In this study, an analysis of the optical performance of two types of distributed Bragg reflector structures based on GaAs and InP material systems was carried out. The structures were designed for maximum performance at 4 µm with their reflectivity achieving between 80 and 90% with eight pairs of constituent layers. To further enhance the performance of these structures, additional Au layers were added at the bottom of the structure with Ti pre-coating applied to improve the adhesivity of the Au to the semiconductor substrate. The optimal range of Ti layer thickness resulting in the improvement of the maximum reflectivity was determined to be in between 5 and 15 nm.
Go to article

Authors and Affiliations

Monika Mikulicz
1
ORCID: ORCID
Mikołaj Badura
2
ORCID: ORCID
Michał Rygała
1
ORCID: ORCID
Tristan Smołka
1
ORCID: ORCID
Wojciech Macherzyński
2
ORCID: ORCID
Adriana Łozińska
2
ORCID: ORCID
Marcin Motyka
1
ORCID: ORCID

  1. Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  2. Department of Microelectronics and Nanotechnology, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Dual-band infrared detector, which acquires more image information than single-band detectors, has excellent detection, recognition, and identification capabilities. The dual-band detector can have two bumps to connect with each absorber layer, but it is difficult to implement small pitch focal plane arrays and its fabrication process is complicated. Therefore, the most effective way for a dual-band detector is to acquire each band by bias-selectable with one bump. To aim this, a dual-band MWIR/LWIR detector based on an InAs/GaSb type-II superlattice nBn structure was designed and its performance was evaluated in this work. Since two absorber layers were separated by the barrier layer, each band can be detected by bias-selectable with one bump. The fabricated dual-band device exhibited the dark current and spectral response characteristics of MWIR and LWIR bands under negative and positive bias, respectively. Spectral crosstalk that is a major issue in dual-band detectors was also improved. Finally, a 20 μm pitch 640 × 512 dual-band detector was fabricated, and both MWIR and LWIR images exhibited an average noise equivalent temperature difference of 30 mK or less at 80 K.
Go to article

Authors and Affiliations

Hyun-Jin Lee
1
ORCID: ORCID
Jun Ho Eom
1
Hyun Chul Jung
1
Ko-Ku Kang
1
Seong Min Ryu
1
Ahreum Jang
1
Jong Gi Kim
1
Young Ho Kim
1
Han Jung
1
Sun Ho Kim
2
Jong Hwa Choi
2

  1.  i3system, Inc., 26-32, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
  2. Agency of Defense Development, 34186 P.O.Box 35, Yuseong-gu, Daejeon, Republic of Korea

This page uses 'cookies'. Learn more