Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study included investigation of efficiency of the threshold used to classify symptoms as present, investigation of efficiency of the cut-off point used to identify potentially addicted to work individuals, investigation of magnitude of the problem of class overlap, and investigation of effects of dichotomization of polytomous items on the estimates of the latent trait level. The sample comprised 16,426 working Norwegians (Mage = 37.31; SD = 11.36) who filled out the Bergen Work Addiction Scale (BWAS). The results showed that the difficulty/third threshold parameters corresponding to the threshold used to classify symptoms as present were lower than 1.5 for the items corresponding to tolerance and conflict and higher than or equal to 1.5 for the items corresponding to salience, mood modification, relapse, withdrawal, and problems. The cut-off point used to identify individuals as potentially addicted to work identified 411 individuals (31.9% of all individuals classified by the polythetic approach as potentially addicted to work) whose estimates of the latent trait level were lower than 1.5 as potentially addicted to work. The problem of class overlap (being classified by the polythetic approach into different class despite almost the same level of the latent trait) affected 4,686 individuals (28.5% of the whole sample). The dichotomization of polytomous items had a substantial effect on the estimates of the latent trait level. The findings show that the polythetic approach is not efficient in identifying potentially addicted to work individuals and that the prevalence rates of work addiction based on the polythetic approach are not trustworthy.

Go to article

Authors and Affiliations

Piotr Bereznowski
Roman Konarski
Download PDF Download RIS Download Bibtex

Abstract

Ukraine is characterised by active natural hazards processes within different structural, tectonic and landscape zones. In Middle Dnieper basin region mass movement processes have great impact on people’s livelihoods and infrastructure. These processes occur on the slopes with different geological structure. The determining causes include lithologic and stratigraphic conditions, hydrogeological regime, structural and textural peculiarities of rocks and the geomorphology of the slopes. Landslide inventory database has been developed based on long-term observations of more than 400 landslides and landslide-prone areas. This paper takes efforts forward by combining different geological and geophysical methods to advance the current understanding of landslide phenomena and contributing towards a better informed assessment of landslide hazard and risk. The developed methodology is implemented in a test sites of Kyiv region, covering an area of 18.3 km2 situated in the Middle Dnieper basin. Electrical Resistivity Tomography, Self-Potential and Infrared Thermography techniques were employed to investigate the lithostratigraphic sequences, the geometry of landslide body and potential mass movement. The results presented here confirm the potential of using an integrated approach that combines different field data to better plan mitigation activities and measures for the effective land management. This study will be useful in increasing the safety aspects of the infrastructures and lives and also for planning of research and developmental activities.
Go to article

Bibliography

DAHLIN T. 1996. 2D resistivity surveying for environmental and engineering applications. First Break. Vol. 14. Iss. 7 p. 275–284. DOI 10.3997/1365-2397.1996014.
FOSTER C., GIBSON A., WILDMAN G. 2008. The new national Landslide Database and Landslide hazard assessment of Great Britain [online]. First World Landslide Forum. Tokyo, Japan 18–21 November 2008 p. 203–206. [Access 05.09.2020]. Available at: http://nora.nerc.ac.uk/4694/
FRODELLA W., FIDOLINI F., MORELLI S., PAZZI V. 2015. Application of Infrared Thermography for landslide mapping: the Rotolon DSGDS case study. Rendiconti Online della Società Geologica Italiana. No. 35 p. 144–147. DOI 10.3301/ROL.2015.85.
FRODELLA W., GIGLI G., MORELLI S., LOMBARDI L., CASAGLI N. 2017. Landslide mapping and characterization through Infrared Thermography (IRT): Suggestions for a methodological approach from some case studies. Remote Sensing. Vol. 9(12), 1281. DOI 10.3390/rs9121281.
FRODELLA W., MORELLI S., GIGLI G., CASAGLI N. 2014. Contribution of infrared thermography to the slope instability characterization. [online] Proceedings of World Landslide Forum 3. Beijing, China 2–6 June 2014. [Access 05.09.2020]. Available at: http://hdl.handle.net/11576/2690166
GARCÍA-RODRÍGUEZ M.J., MALPICA J.A., BENITO B., DIAZ M. 2008. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology. Vol. 95. Iss. 3 p. 172–191. DOI 10.1016/j.geomorph.2007.06.001.
GIGLI G., FRODELLA W., GARFAGNOLI F., MORELLI S., MUGNAI F., MENNA F., CASAGLI N. 2014. 3-D geomechanical rock mass characterization for the evaluation of rockslide susceptibility scenarios. Land-slides. Vol. 11 p. 131–140. DOI 10.1007/s10346-013-0424-2.
IVANIK O., SHEVCHUK V., KRAVCHENKO D., YANCHENKO V., SHPYRKO S., GADIATSKA K. 2019. Geological and geomorphological factors of natural hazards in Ukrainian Carpathians. Journal of Ecological Engineering. Vol. 20. Iss. 4 p. 177–186. DOI 10.12911/22998993/102964.
JABOYEDOFF M., OPPIKOFER T., ABELLÁN A., DERRON M.-H., LOYE A., METZGER R., PEDRAZZINI A. 2012. Use of LIDAR in landslide investigations: A review. Natural Hazards. No. 61 p. 5–28. DOI 10.1007/s11069-010-9634-2.
MARESCOT L., MONNET R., CHAPELLIER D. 2008. Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Engineering Geology. Vol. 98(1) p. 18–28. DOI 10.1016/j.enggeo.2008.01.010.
MENSHOV O., SHEVCHENKO O., ANDREEVA O. 2020. Integration of magnetic and hydrogeological studies for landslides and soil erosion assessment. Case study from area Lake Glinka (Kyiv, Ukraine). Geoinformatics: Theoretical and Applied Aspects 2020. Conference Proceedings. Vol. 2020. 11–14.05.2020. Kyiv p. 1–5. European Association of Geoscientists & Engineers. DOI 10.3997/2214-4609.2020geo122.
MYKOLAENKO O.A., ZHYRNOV P.V., TOMCHENKO O.V., PIDLISETSKA I.O. 2020. Exogenic processes’ remote monitoring of Kanivske Reservoir’s right bank. Geoinformatics: Theoretical and Applied Aspects 2020. Conference Proceedings. Vol. 2020. 11–14.05.2020. Kyiv p. 1–5. European Association of Geoscientists & Engineers. DOI 10.3997/2214-4609.2020geo099.
PATELLA D. 1997. Introduction to ground surface self-potential tomography. Geophysical Prospecting. Vol. 45. Iss. 4 p. 653– 681. DOI 10.1046/j.1365-2478.1997.430277.x.
PERRONE A., LAPENNA V., PISCITELLI S. 2014. Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews. Vol. 135 p. 65–82. DOI 10.1016/j.earscirev.2014.04.002.
REYNOLDS J. M. 2011. An introduction to applied and environmental geophysics. Chichester. John Wiley and Sons Ltd. ISBN 978-0- 471-48535-3 (pbk) pp. 710.
SANTOSO B., HASANAH M.U., SETIANTO 2019. Landslide investigation using self potential method and electrical resistivity tomography (Pasanggrahan, South Sumedang, Indonesia). IOP Conference Series: Earth and Environmental Science. Vol. 311 p. 1–9. International Symposium on Geophysical Issues. 2–4.06.2018, Bandung, Indonesia. DOI 10.1088/1755-1315/311/1/012068.
TELFORD W.M., GELDART L.P., SHERIFF R.E. 1990. Applied geophysics. Cambridge. Cambridge University Press. ISBN 9780521339384 pp. 792. DOI 10.1017/CBO9781139167932.
TEZA G., MARCATO G., CASTELLI E., GALGARO A. 2012. IRTROCK: A Matlab toolbox for contactless recognition of surface and shallow weakness traces of a rock mass by infrared thermo-graphy. Computers & Geosciences. Vol. 45 p. 109–118. DOI 10.1016/j.cageo.2011.10.022.
VYZHVA S., ONYSHCHUK V., ONYSHCHUK I., REVA M., SHABATURA O. 2019. Application of geophysical methods in the study of landslides. 18th International Conference on Geoinformatics – Theoretical and Applied Aspects. Kyiv, May 2019. European Association of Geoscientists & Engineers Source p. 1–5. DOI 10.3997/2214-4609.201902066.
WU J.H., LIN H.M., LEE D.H., FANG S.C. 2015. Integrity assessment of rock mass behind the shotcreted slope using thermography. Engineering Geology. Vol. 80. No. 1–2 p. 164–173. DOI 10.1016/j.enggeo.2005.04.005.
Go to article

Authors and Affiliations

Olena Ivanik
1
ORCID: ORCID
Joana Fonseca
2
ORCID: ORCID
Oleksandr Shabatura
1
ORCID: ORCID
Ruslan Khomenko
1
ORCID: ORCID
Kateryna Hadiatska
1
ORCID: ORCID
Dmytro Kravchenko
1
ORCID: ORCID

  1. Taras Shevchenko National University of Kyiv, Institute of Geology, 60, Volodymyrska str., Kyiv, 03001, Ukraine
  2. City, University of London, School of Mathematics, Computer Science and Engineering, Department of Civil Engineering, London, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

Deterioration and defects in building components are key aspects to consider when assessing buildings’ conditions, as they may influence the building’s functionality. The typical defects include cracking, moisture, dampness, and architectural defects. This paper aims to evaluate the defects in a building using a non-destructive testing (NDT), which is the Infrared Thermography (IRT) method. A visual inspection method is then conducted to verify the results of the IRT method. The combination of IRT and visual inspection methods can identify the type of defect and level of severity more accurately. In both methods, ratings or scores are given to the collected defect data to determine the consistency between them. Two (2) buildings were selected as case studies; AA1 and BB2 are multistorey buildings. From those, 51 and 67 spots were taken from the IRT method and further verification process, respectively. Among the defects that were found were moisture, dampness, cracking, staining, chipping, and flaking paint. From all the findings, IRT was found to be comparable with the visual inspection results for serious defects such as cracking and flaking paint. However, IRT was believed to underestimate the architectural defects of staining and chipping. Even so, serious defects such as dampness were also underestimated in IRT due to the fact that the temperature difference between different ratings will not differ much. In conclusion, the IRT method has the potential to be used as a tool for building condition rating. However, it should be assisted with a visual inspection, and more research needs to be conducted for its practicality.
Go to article

Authors and Affiliations

Muhd Zubair Tajol Anuar
1
ORCID: ORCID
Noor Nabilah Sarbini
1
ORCID: ORCID
Izni Syahrizal Ibrahim
1
ORCID: ORCID
Siti Hajar Othman
2
ORCID: ORCID
Mohd Nadzri Reba
3
ORCID: ORCID

  1. Department of Structure & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  3. Geoscience & Digital Earth Centre (Insteg), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

This page uses 'cookies'. Learn more