Search results

Filters

  • Journals
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hard turning is a machining process that is widely used in the precision mechanical industry. The characterization of the functional surface texture by the ISO 13565 standard holds a key role in automotive mechanics. Until now, the impact of cutting conditions during hard turning operation on the bearing area curve parameters has not been studied (ISO 13565). The three parameters Rpk , Rk and Rvk illustrate the ability of the surface texture to resist friction. In this work, the main objective is to study the impact of cutting conditions (Vc, f and ap) of the hard turning on three parameters of the bearing area curve. The statistical study based on response surface methodology (RSM), analysis of variance (ANOVA) and quadratic regression were performed to model the three output parameters and optimize the input parameters. The experimental design used in this study is the Taguchi L25 orthogonal array. The results obtained show that the cutting speed has a greater effect on the bearing ratio curve (Rpk , Rk and Rvk ) parameters with a percentage contribution of 37.68%, 37.65% and 36.91%, respectively. The second significant parameter is the feed rate and the other parameter is significant only in relation to Rpk and Rk parameters.

Go to article

Bibliography

[1] W. Grzesik and K. Żak. Modification of surface finish produced by hard turning using superfinishing and burnishing operations. Journal of Materials Processing Technology, 212(1):315–322, 2012. doi: 10.1016/j.jmatprotec.2011.09.017.
[2] W. Grzesik and T. Wanat. Comparative assessment of surface roughness produced by hard machining with mixed ceramic tools including 2D and 3D analysis. Journal of Materials Processing Technology, 169(3):364–371, 2005. doi: 10.1016/j.jmatprotec.2005.04.080.
[3] B. Fnides, H. Aouici, M. Elbah, S. Boutabba, and L. Boulanouar. Comparison between mixed ceramic and reinforced ceramic tools in terms of cutting force components modelling and optimization when machining hardened steel AISI 4140 (60 HRC). Mechanics & Industry, 16(6):609, 2015. doi: 10.1051/meca/2015036.
[4] H. Aouici, H. Bouchelaghem, M.A. Yallese, M. Elbah, and B. Fnides. Machinability investigation in hard turning of AISI D3 cold work steel with ceramic tool using response surface methodology. The International Journal of Advanced Manufacturing Technology, 73(9-12):1775–1788, 2014. doi: 10.1007/s00170-014-5950-0.
[5] M. Dogra, V.S. Sharma, A. Sachdeva, N.M. Suri, and J.S. Dureja. Tool wear, chip formation and workpiece surface issues in CBN hard turning: A review. International Journal of Precision Engineering and Manufacturing, 11(2):341–358, 2010. doi: 10.1007/s12541-010-0040-1.
[6] V. Bhemuni, S.R. Chalamalasetti, P.K. Konchada, and V.V. Pragada. Analysis of hard turning process: thermal aspects. Advances in Manufacturing, 3(4):323–330, 2015. doi: 10.1007/s40436-015-0124-3.
[7] F. Klocke, E. Brinksmeier, and K. Weinert. Capability profile of hard cutting and grinding processes. CIRP Annals, 54(2):22–45, 2005. doi: 10.1016/S0007-8506(07)60018-3.
[8] A. Khellouki, J. Rech, and H. Zahouani. The effect of lubrication conditions on belt finishing. International Journal of Machine Tools and Manufacture, 50(10):917–921, 2010. d oi: 10.1016/j.ijmachtools.2010.04.004.
[9] K. Mondal, S. Das, B. Mandal, and D. Sarkar. An investigation on turning hardened steel using different tool inserts. Materials and Manufacturing Processes, 31(13):1770–1781, 2016. doi: 10.1080/10426914.2015.1117634.
[10] C. Duan, F. Zhang, W. Sun, X. Xu, and M. Wang. White layer formation mechanism in dry turning hardened steel. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(2):1–12, 2018. doi: 10.1299/jamdsm.2018jamdsm0044.
[11] P. Revel, N. Jouini, G. Thoquenne, and F. Lefebvre. High precision hard turning of AISI 52100 bearing steel. Precision Engineering, 43:24–34, 2016. doi: 10.1016/j.precisioneng.2015.06.006.
[12] S. Saini, I. Singh Ahuja, and V.S. Sharma. Influence of cutting parameters on tool wear and surface roughness in hard turning of AISI H11 tool steel using ceramic tools. International Journal of Precision Engineering and Manufacturing, 13(8):1295–1302, 2012. doi: 10.1007/s12541-012-0172-6.
[13] D. Manivel and R. Gandhinathan. Optimization of surface roughness and tool wear in hard turning of austempered ductile iron (grade 3) using Taguchi method. Measurement, 93:108–116, 2016. doi: 10.1016/j.measurement.2016.06.055.
[14] G. Bartarya and S.K. Choudhury. Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel. Procedia CIRP, 1:651–656, 2012. doi: 10.1016/j.procir.2012.05.016.
[15] H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, and J.F. Rigal. Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45(3):344–353, 2012. doi: 10.1016/j.measurement.2011.11.011.
[16] M.W. Azizi, S. Belhadi, M.A. Yallese, T. Mabrouki, and J.F. Rigal. Surface roughness and cutting forces modeling for optimization of machining condition in finish hard turning of AISI 52100 steel. Journal of Mechanical Science and Technology, 26(12):4105–4114, 2012. doi: 10.1007/s12206-012-0885-6.
[17] S.K. Shihab, Z.A. Khan, A.N. Siddiquee, and N.Z. Khan. A novel approach to enhance performance of multilayer coated carbide insert in hard turning. Archive of Mechanical Engineering, 62(4):539–552, 2015. doi: 10.1515/meceng-2015-0030.
[18] N. Jouini, P. Revel, P.E. Mazeran, and M. Bigerelle. The ability of precision hard turning to increase rolling contact fatigue life. Tribology International, 59:141–146, 2013. doi: 10.1016/j.triboint.2012.07.010.
[19] N. Jouini, P. Revel, G. Thoquenne, and F. Lefebvre. Characterization of surfaces obtained by precision hard turning of AISI 52100 in relation to RCF life. Procedia Engineering, 66:793–802, 2013. doi: 10.1016/j.proeng.2013.12.133.
[20] N. Jouini, P. Revel, and M. Bigerelle. Relevance of roughness parameters of surface finish in precision hard turning. Scanning, 36(1):86–94, 2014. doi: 10.1002/sca.21100.
[21] G. Rotella, D. Umbrello, O.W. Dillon Jr., and I.S. Jawahir. Evaluation of process performance for sustainable hard machining. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6(6):989–998, 2012. doi: 10.1299/jamdsm.6.989.
[22] I. Meddour, M.A. Yallese, R. Khattabi, M. Elbah, and L. Boulanouar. Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization. The International Journal of Advanced Manufacturing Technology, 77(5-8):1387–1399, 2014. doi: 10.1007/s00170-014-6559-z.
[23] I. Meddour, M.A. Yallese, H. Bensouilah, A. Khellaf, and M. Elbah. Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool. The International Journal of Advanced Manufacturing Technology, 97(5-8):1931–1949, 2018. doi: 10.1007/s00170-018-2026-6.
[24] S. Siraj, H.M. Dharmadhikari, and N. Gore. Modeling of roughness value from tribological parameters in hard turning of AISI 52100 steel. Procedia Manufacturing, 20:344–349, 2018. doi: 10.1016/j.promfg.2018.02.050.
[25] H. Bensouilah, H. Aouici, I. Meddour, M.A. Yallese, T. Mabrouki, and F. Girardin. Performance of coated and uncoated mixed ceramic tools in hard turning process. Measurement, 82:1–18, 2016. doi: 10.1016/j.measurement.2015.11.042.
[26] E. Yücel and M. Günay. Modelling and optimization of the cutting conditions in hard turning of high-alloy white cast iron (Ni-Hard). Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(10):2280–2290, 2012. doi: 10.1177/0954406212471755.
[27] M. Elbah, H. Aouici, I. Meddour, M.A. Yallese, and L. Boulanouar. Application of response surface methodology in describing the performance of mixed ceramic tool when turning AISI 4140 steel. Mechanics & Industry, 17(3):309, 2016. doi: 10.1051/meca/2015076.
[28] L. Bouzid, M.A. Yallese, K. Chaoui, T. Mabrouki, and L. Boulanouar. Mathematical modeling for turning on AISI 420 stainless steel using surface response methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(1):45–61, 2014. doi: 10.1177/0954405414526385.
[29] A. Agrawal, S. Goelb, W. Bin Rashid, and M. Pric. Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC). Applied Soft Computing, 30:279–286, 2015. doi: 10.1016/j.asoc.2015.01.059.
[30] A. Alok and M. Das. Multi-objective optimization of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN$^2$-coated carbide insert. Measurement, 133:288–302, 2019. doi: 10.1016/j.measurement.2018.10.009.
[31] O. Zerti, M.A. Yallese, R. Khettabi, K. Chaoui, and T. Mabrouki. Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. The International Journal of Advanced Manufacturing Technology, 89(5-8):1915–1934, 2017. doi: 10.1007/s00170-016-9162-7.
[32] S. Chinchanikar and S.K. Choudhury. Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement, 46(4):1572–1584, 2013. doi: 10.1016/j.measurement.2012.11.032.
[33] A. Alok and M. Das. Cost effective way of hard turning with newly developed HSN2 coated tool. Materials and Manufacturing Processes, 33(9):1003–1010, 2018. doi: 10.1080/10426914.2017.1388521.
[34] Z. Hessainia, M.A. Yallese, L. Bouzid, and T. Mabrouki. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert. International Journal of Industrial Engineering Computations, 6(2):267–284, 2015. doi: 10.5267/j.ijiec.2014.10.003.
[35] İ. Asiltürk and H. Akkuş. Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement, 44(9):1697–1704, 2011. doi: 10.1016/j.measurement.2011.07.003.
[36] T. Kıvak. Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 50:19–28, 2014. doi: 10.1016/j.measurement.2013.12.017.
[37] T. Kıvak, G. Samtaş, and A. Çiçek. Taguchi method based optimization of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement, 45(6):1547–1557, 2012. doi: 10.1016/j.measurement.2012.02.022.
[38] M. Nalbant, H. Gökaya, and G. Sur. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & Design, 28(4):1379–1385, 2007. doi: 10.1016/j.matdes.2006.01.008.
[39] R. Shetty, R.B. Pai, S.S. Rao, and R. Nayak. Taguchi's technique in machining of metal matrix composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 31(1):12–20, 2009. doi: 10.1590/S1678-58782009000100003.
[40] A. Khellouki, J. Rech, and H. Zahouani. The effect of abrasive grain's wear and contact conditions on surface texture in belt finishing. Wear, 263(1-6):81–87, 2007. doi: 10.1016/j.wear.2006.11.037.
Go to article

Authors and Affiliations

Amine Hamdi
1 2
Sidi Mohammed Merghache
2
Toufik Aliouane
1

  1. Laboratory of Applied Optics (LAO), Institute of Optics and Precision Mechanics, University Ferhat Abbas Setif 1, 19000, Algeria.
  2. Institute of Sciences & Technology, University Center of Tissemsilt, 38000, Algeria.

This page uses 'cookies'. Learn more