Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In Agricultural and Industrial Works FARMUTIL HS at Śmiłów were "cleaner production" program has been pul in practice, elimination of odors occurring during production of the meal and bone meal is of vital importance. Conccnlrations and emissions of lola! dust, organic substances in form of gas and vapors (as total organic carbon), hydrogen chloride, fluorine chloride, sulphur and nitrogen dioxides, carbon monoxide, heavy metals, polychlorinatcd dibcnzodioxins and dibcnzofurans were measured al emitters of the piani for thermal disposal of odors from the production of the meat and bone meal. The results of measurements and analyses of the composition of the flue gas emitted lo the atmosphere revealed that the concentration of harmful chemical compounds was low, lower than the permissible values defined in the standards.
Go to article

Authors and Affiliations

Zygmunt Kowalski
Anna Maślanka
Ewa Surowiec
Download PDF Download RIS Download Bibtex

Abstract

The paper attempts to determine the impact of fuel impurities on the spark discharge energy and the wear of the spark plug electrode. Spark plugs were analyzed in two typical configurations of the ignition system. A number of tests were conducted to determine the wear of the spark plug electrode exposed to different types of impurities. The spark discharge energy for new and worn spark plugs was determined through calculation.

Go to article

Authors and Affiliations

Sebastian Różowicz
Szymon Tofil
Download PDF Download RIS Download Bibtex

Abstract

Temperature gradient zone melting (TGZM) method was used to obtain bulk Si continuously for the efficient separation and purification of primary Si from the Si-Al alloy in this work. The effects of alloy thickness, temperature gradient and holding time in TGZM purification technology were investigated. Finally, the continuous growth of bulk Si without eutectic inclusions was obtained. The results showed that the growth rate of bulk Si was independent of the liquid zone thickness. When the temperature gradient was changed from 2.48 K/mm to 3.97 K/mm, the growth rate of bulk Si was enhanced from 7.9×10–5 mm/s to 2.47×10–4 mm/s, which was increased by about 3 times. The bulk Si could grow continuously and the growth rate was decreased with the increase of holding time from 1 h to 5 h. Meanwhile, low refining temperature was beneficial to the removal of impurities. With a precipitation temperature of 1460 K and a temperature gradient of 2.48 K/mm, the removal rates of Fe, P and B were 99.8%, 94.0% and 63.6%, respectively.

Go to article

Authors and Affiliations

Jiayan Li
Liang Wang
Jianjie Hao
Ping Ni
Yi Tan
Download PDF Download RIS Download Bibtex

Abstract

Feldspar is a basic requirement for glass, ceramics, and other industries. The presence of iron in feldspar is one of the challenging aspects of feldspar processing. To improve the quality of feldspar for use in various industries, dry magnetic separation is one of the best techniques for reducing iron in feldspar, especially in arid regions to overcome the common problem of lack of water resources as well as to reduce the operational cost of the enrichment process. Therefore, dry magnetic separation experiments were carried out to remove the iron content from feldspar ore in the Wadi Umm Harjal area in Egypt to meet the specifications required for different industries. The sample was analysed using XRD, XRF, and optical microscopy, which revealed that it is a mixture of potassium feldspar (microcline/orthoclase), albite, and quartz in the presence of hematite mineral serving as the main iron impurities in addition to the free silica content. The effect of parameters on the activity of the dry high magnetic separators was investigated in addition to cleaning the products. The iron oxide reduced from 0.69% in the head sample to 0.08% after dry high-intensity magnetic separation, and the whiteness increased from 82.01% in the head sample to 95.97% in the separated concentrate. The experimental results showed that there is a possibility to obtain feldspar concentrates with low content of Fe2O3 from the area where according to the results, approximately 88.4% of iron was removed from the head sample.
Go to article

Authors and Affiliations

Khaled Yassin
1
ORCID: ORCID
Mahmoud Ahmed
2
ORCID: ORCID
Mohamed Gamal Eldin Khalifa
3
ORCID: ORCID
Ayman Aly Hagrass
3
ORCID: ORCID

  1. Central Metallurgical Research & Development Institute (CMRDI), Helwan, Cairo, Egypt
  2. Egyptian Mineral Resources Authority (EMRA), Abbasia, Cairo, Egypt
  3. Tabbin Institute for Metallurgical Studies (TIMS), Helwan, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

Salt caverns are used for the storage of natural gas, LPG, oil, hydrogen, and compressed air due to rock salt advantageous mechanical and physical properties, large storage capacity, flexible operations scenario with high withdrawal and injection rates. The short- and long-term mechanical behaviour and properties of rock salt are influenced by mineral content and composition, structural and textural features (fabrics). Mineral composition and fabrics of rock salt result from the sedimentary environment and post sedimentary processes. The impurities in rock salt occur in form of interlayers, laminae and aggregates. The aggregates can be dispersed within the halite grains or at the boundary of halite grains. Mineral content, mineral composition of impurities and their occurrence form as well as halite grain size contribute to the high variability of rock salt mechanical properties. The rock or mineral impurities like claystone, mudstone, anhydrite, carnallite and sylvite are discussed. Moreover, the influence of micro fabrics (in micro-scale) like fluid inclusions or crystals of other minerals on rock salt mechanical performance is described. In this paper the mechanical properties and behaviour of rock salt and their relation to mineral composition and fabrics are summarised and discussed. The empirical determination of impurities and fabrics impact on deformation mechanism of rock salt, qualitative description and formulation of constative models will improve the evaluation and prediction of cavern stability by numerical modelling methods. Moreover, studying these relations may be useful in risk assessment and prediction of cavern storage capacity.
Go to article

Bibliography

[1] F . Crotogino, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 391-409 (2016).
[2] S. Donadei, G.S. Schneider, Compressed Air Energy Storage in Underground Formations. Letcher T.M. (ed.), Storing Energy, Elsevier, 113-133 (2016).
[3] J.G. Speight, Recovery, storage, and transportation. Speight J.G. (ed.) Natural Gas (Second Edition), Gulf Professional Publishing, 149-186 (2019).
[4] J. Chen, D. Lu, W. Liu, J. Fan et al., Stability study and optimization design of small-spacing two-well (SSTW) salt caverns for natural gas storages. Journal of Energy Storage 27, 101131 (2020). DOI: https://doi.org/10.1016/j.est.2019.101131
[5] S. Mokhatab, W.A. Poe, J.Y. Mak, Natural gas fundamentals. In: Mokhatab S., Poe W.A., Mak J.Y. (eds.), Handbook of natural gas transmission and processing (Fourth Edition), Gulf Professional Publishing, 1-35 (2019).
[6] H. Yin, C. Yang, H. Ma, Study on damage and repair mechanical characteristics of rock salt under uniaxial compression. Rock Mech. Rock Eng. 52, 659-671 (2019). DOI: https://doi.org/10.1007/s00603-018-1604-0
[7] Q. Zhang, J. Liu, L. Wang, M. Luo et al., Impurity efects on the mechanical properties and permeability characteristics of salt rock. Energies 13, 1366 (2020). DOI: https://doi.org/10.3390/en13061366
[8] K.M. Looff, K.M. Looff, C.A. Rautman, Salt spines, boundary shear zones and anomalous salts: their characteristics, detection and influence on salt dome storage caverns. SMRI Spring Technical Conference, April 26-27, 2010, Grand Junction, Colorado, (2010).
[9] K.M. Looff, K.M. Looff, C.A. Rautman, Inferring the geologic significance and potential imapact of salt fabric and anomalous salt on the development and long-term operation of salt storage caverns on gulf coast salt domes. SMRI Spring Technical Conference, 26-27 April 2010, Grand Junction, Colorado (2010).
[10] Q. Zhang, Z. Song, J. Wang, Y. Zhang et al., Creep properties and constitutive model of salt rock. Advances in Civil Engineering 8867673 (2021). DOI: https://doi.org/10.1155/2021/8867673
[11] J.K. Warren, Evaporites: sediments, resources and hydrocarbons. Springer Springer-Verlag Berlin Heidelberg (2006).
[12] J.K. Warren, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Science Reviews 165, 302-341 (2017). DOI: https://doi.org/10.1016/j.earscirev.2016.11.008
[13] A. Luangthip, N. Wilalak, T. Thongprapha, K. Fuenkajorn, Effects of carnallite content on mechanical properties of Maha Sarakham rock salt. Arab. J. Geosc. 10, 149, (2017).
[14] R .C.M. Franssen, C.J. Spiers, Deformation of polycrystalline salt in compression and in shear at 250-350°C. In: R.J. Knipe, E.H. Rutter (eds), Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 201-213 (1990).
[15] S.V. Raj, G.M. Pharr, Effect of temperature on the formation of creep substructure in sodium chloride single crystal. J. Amer. Cer. Soc. 75, 347-352 (1992).
[16] P.E. Senseny, J.W. Handin, F.D. Hansen, J.E. Russell, Mechanical behavior of rock salt: phenomenology and micro-mechanisms. Int. J. Rock Mech. Min. Sc. 29, 363-378 (1992).
[17] M.S. Bruno, Geomechanical analysis and design considerations for thin-bedded salt caverns: final report. Arcadia, CA: Terralog Technologies USA (2005).
[18] M.S. Bruno, L. Dorfmann, G. Han K, Lao. Et al., 3D geomechanical analysis of multiple caverns in bedded salt. SMRI Fall Technical Conference, 1-5 October 2005, Nancy, France, 1-25 (2005).
[19] K.L. De Vries, K.D. Mellegard, G.D. Callahan, W.M. Goodman, Cavern roof stability for natural gas storage in bedded salt. RESPEC final report 26 September 2002 – 31 March 2005 for United States Department of Energy National Energy Technology Laboratory (2005).
[20] C. Jie, L. Dan, L. Wei, F. Jinyang et al., Stability study and optimization design of smallspacing two-well (SSTW) salt caverns for natural gas storage. J. Ener. Stor. 27, 101131 (2020). DOI: https://doi.org/10.1016/j.est.2019.101131
[21] J.L. Li, Y. Tang, X.L. Shi, W. Xu et al., Modelling the construction of energy storage salt caverns in bedded salt. Appl. Energ. 255, 113866 (2019). DOI: https://doi.org/10.1016/j.apenergy.2019.113866
[22] T . Wang, X. Yan, H. Yang, X. Yang et al., A new shape design method of salt cavern used as underground gas storage. Appl. Energ. 104, 50-61 (2013). DOI: https://doi.org/10.1016/j.apenergy.2012.11.037
[23] T .T. Wang, C.H. Yang, X.L. Shi, H.L. Ma, Y.P. et al., Failure analysis of thick interlayer from leaching of bedded salt caverns. Int. J. Rock Mech. Min. Sci. 73, 175-183 (2015). DOI: https://doi.org/10.1016/j.ijrmms.2014.11.003
[24] T . Wang, C. Yang, H. Ma, Y. Li et al., Safety evaluation of salt cavern gas storage close to an old cavern. Int. J. Rock Mech. Min. Sci. 83, 95-106 (2016). DOI: https://doi.org/10.1016/j.ijrmms.2016.01.005
[25] Y . Wang, J. Liu, Critical length and collapse of interlayer in rock salt natural gas storage. Adv. Civ. Eng., Article ID 8658501 (2018). DOI: https://doi.org/10.1155/2018/8658501
[26] H. Yin, C. Yang, H. Ma, X. Shi et al., Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotech. 15, 549-563 (2020). DOI: https://doi.org/10.1007/s11440-019-00901-y
[27] G. Zhang, Y. Li, J.J.K. Daemen, C. Yang et al., Geotechnical feasibility analysis of compressed air energy storage (CAES) in bedded salt formations: a case study in Huai’an City, China. Rock Mech. Rock Eng. 48, 5, 2111-2127 (2015). DOI: https://doi.org/10.1007/s00603-014-0672-z
[28] N . Zhang, X.L. Shi, T.T. Wang, C. Yang et al., Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China. Energy 134, 504-514 (2017). DOI: https://doi.org/10.1016/j.energy.2017.06.073
[29] J.L. Li, X. Shi, C. Yang, Y. Li et al., Repair of irregularly shaped salt cavern gas storage by re-leaching under gas blanket. J. Nat. Gas Sci. Eng. 45, 848-859 (2017). DOI: https://doi.org/10.1016/j.jngse.2017.07.004
[30] K.M. Looff, The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. American Gas Association Operations Conference 2-5 May 2017, Orlando, Florida (2017).
[31] J. Li, X. Shi, C. Yang, Y. Li et al., Mathematical model of salt cavern leaching for gas storage in high insoluble salt formations. Sci. Rep. 8, 372, 1-12 (2018). DOI: https://doi.org/10.1038/s41598-017-18546-w
[32] Y . Charnavel, J. O’Donnell, T. Ryckelynck, Solution Mining at Stublach. SMRI Spring Technical Conference 27-28 April 2015 Rochester, New York, USA (2015).
[33] K. Looff, J. Duffield, K. Looff, Edge of Salt Definition for Salt Domes and Other Deformed Salt Structures – Geologic and Geophysical Considerations. SMRI Spring Technical Conference 27-30 April 2003, Houston, Texas, USA (2003).
[34] L.H. Gevantman (ed.), Physical properties data for rock salt. Monograph 161, U.S. Deptartment of the Commerce, National Bureau of Standards, Government Printing Office, Washington D.C. (1981).
[35] A. Garlicki, Salt Mines at Bochnia and Wieliczka. Przegląd Geologiczny 56, 8/1, 663-669 (2008).
[36] J. Wachowiak, Poziomy mineralne w solach cechsztyńskich wysadu solnego Kłodawa jako narzędzie korelacji litostratygraficznej. Kwartalnik AGH – Geologia 36, 2, 367-393 (2010).
[37] D .H. Kupfer, Problems associated with anomalous zones in Louisiana salt stocks, USA. In: A.H. Coogan and L. Hauber, eds., Fifth Symposium of Salt, Hamburg Germany, June 1978, Northern Ohio Geological Society, Cleveland 1, 119-134 (1980).
[38] D .H. Kupfer, Anomalous features in the Five Island Salt Stocks, Louisiana. Gulf Coast Association of Geological Societies Transactions 40, 425-437 (1990).
[39] Z . Schléder, J.L. Urai, Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int. J. Earth Sci. (Geol Rundsch) 94, 5-6, 941-955 (2005). DOI: https://doi.org/10.1007/s00531-005-0503-2
[40] J.L. Urai, Z. Schléder, C.J. Spiers, P.A. Kukla, Flow and transport properties of saltrocks. In: R. Littke, U. Bayer, D. Gajewski, S. Nelskamp (eds.) Dynamics of complex intracontinental basins: The Central European Basin System. Berlin: Springer, 277-90 (2008).
[41] J.L. Urai, C.J. Spiers, The effect of grain boundary water on deformation mechanisms and rheology of rocksalt during long-term deformation. In: M. Wallner, K. Lux, W. Minkley, H. Hardy (eds.), Proceedings of the 6th conference on the mechanical behavior of salt, Hannover, Germany (2007).
[42] M. Azabou, A. Rouabhi, L. Blanco-Martìn, Effect of insoluble materials on the volumetric behavior of rock salt. J. Rock Mech. Geotech. Eng. 13, 1, 84-97 (2021). DOI: https://doi.org/10.1016/j.jrmge.2020.06.007
[43] R .K. Dubey, Bearing of structural anisotropy on deformation and mechanical response of rocks: an experimental example of rocksalt deformation under variable compression rates. J. Geol. Soc. India 91, 109-114 (2018). DOI: https://doi.org/10.1007/s12594-018-0826-9.
[44] Y. Li, W. Liu, C. Yang, J.J.K. Daemen, Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int. J. Rock Mech. Min. Sci. 69, 39-49 (2014). DOI: https://doi.org/10.1016/j.ijrmms.2014.03.006
[45] W . Liang, C. Yang, Y. Zhao, M.B. Dusseault, J. Liu, Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 44, 3, 400-411 (2007). DOI: https://doi.org/10.1016/j.ijrmms.2006.09.007
[46] W . Liu, Z. Zhang, J. Fan, D. Jiang, J.J.K. Daemen, Research on the Stability and Treatments of Natural Gas Storage Caverns with Different Shapes in Bedded Salt Rocks. IEEE Access, 8, 18995-19007 (2020). DOI: https://doi. org/10.1109/ACCESS.2020.2967078
[47] K.D. Mellegard, L.A. Roberts, G.D. Callahan, Effect of sylvite content on mechanical properties of potash. Pierre Bérest, Mehdi Ghoreychi, Faouzi Hadj-Hassen, Michel Tijani (eds.) Mechanical Behaviour of Salt VII Edition 1st Edition, Imprint CRC Press (2012).
[48] D .E. Munson, Constitutive model of creep in rock salt applied to underground room closure. Int. J. Rock Mech. Min. Sci. 34, 233-247 (1997). DOI: https://doi.org/10.1016/S0148-9062(96)00047-2
[49] A. Pouya, Correlation between mechanical behaviour and petrological properties of rock salt. Proceedings of the 32nd US Symposium on Rock Mechanics, USRMS (1991).
[50] H. Alkan, Y. Cinarb, G. Pusch, Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int. J. Rock Mech. Min. Sci. 44, 108-119 (2007). DOI: https://doi.org/10.1016/j.ijrmms.2006.05.003
[51] Von Sambeek L., Ratigan J.L., Hansen F.D., Dilatancy of Rock Salt in Laboratory Tests. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 7, 735-738 (1993). DOI: https://doi.org/10.1016/0148-9062(93)90015-6
[52] U. Hunsche, A. Hampel, Rock salt – The mechanical properties of the host rock material for a radioactive waste repository. Eng. Geol. 52, 271-291 (1999). DOI: https://doi.org/10.1016/S0013-7952(99)00011-3
[53] O . Schulze, T. Popp, H. Kern, Development of damage and permeability in deforming rock salt. Eng. Geol. 61, 163-180 (2001). DOI: https://doi.org/10.1016/S0013-7952(01)00051-5
[54] H. Moriya, T. Fujita, H. Niitsum, Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany. Int. J. Rock Mech. Min. Sci. 43, 49-57 (2006). DOI: https://doi.org/10.1016/j.ijrmms.2005.04.003
[55] W . Liang, C. Zhang, H. Gao, X. Yang et al., Experiments on mechanical properties of salt rocks under cycling loading. J. Rock Mech. Geotech. Eng. 4, 1, 54-61 (2012). DOI: https://doi.org/10.3724/SP.J.1235.2012.00054
[56] C. Jie, J. Zhang, S. Ren, L. Li, L. Yin, Determination of damage constitutive behaviour for rock salt under uniaxial compress ion condition with acoustic emission. The Open Civil Engineering Journal 9, 75-81 (2015). DOI: https://doi.org/10.2174/1874149501509010075
[57] H. Mansouri, R. Ajalloeian, Mechanical behavior of salt rock under uniaxial compression and creep tests. Int. J. Rock Mech. Min. Sci. 110, 19-27 (2018). DOI: https://doi.org/10.1016/j.ijrmms.2018.07.006
[58] D . Flisiak, Laboratory testing of geomechanical properties for selected Permian rock salt deposits. Miner. Resour. Manag. 24, 121-140 (2008).
[59] C. Yang, T. Wang, Y. Li, H. Yang et al., Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl. Energ. 137, 467-481 (2015). DOI: https://doi.org/10.1016/j.apenergy. 2014.07.048
[60] G. Speranza, A. Vona, S. Vinciguerra, C. Romano, Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula. Tectonophysics 666, 103-120 (2016). DOI: https://doi.org/10.1016/j.tecto.2015.10.018
[61] Y.-L. Zhao, W. Wan, Mechanical properties of bedded rock salt. Electron. J. Geotech. Eng. 19, 9347-9353 (2014).
[62] M. Kolano, D. Flisiak, Comparison of geo-mechanical properties of white rock salt and pink rock salt in Kłodawa salt diaper. Studia Geotechnica et Mechanica 35, 1, 119-127 (2013). DOI: https://doi.org/10.2478/sgem-2013-0010
[63] K. Cyran, Tectonics of Miocene salt series in Poland. PhD thesis, AGH University of Science and Technology, Cracow (2008).
[64] D . Flisiak, K. Cyran, Właściwości geomechaniczne mioceńskich soli kamiennych. Biuletyn Państwowego Instytutu Geologicznego 429, 43-49 (2008).
[65] J. Chen, C. Du, D. Jiang, J. Fan, J. He, The mechanical properties of rock salt under cyclic loading-unloading experiments. Geomechanics and Engineering 10, 3, 325-334 (2016). DOI: https://doi.org/10.12989/gae.2016.10.3.325
[66] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: M. Aubertin, H.R. Hardy (eds.), Proceedings of the fourth conference on the mechanical behaviour of salt, 17-18 June, Montreal. Clausthal, Trans Tech. Publications; 163-7 (1996).
[67] C.J. Spiers, N.L. Carter, Microphysics of rocksalt flow in nature. In: Aubertin M, Hardy HR, editors. The mechanical behavior of salt proceedings of the 4th conference, Trans Tech. Publ. Series on Rock and Soil Mechanics, 22, 15-128 (1998).
[68] J.L. Ratigan, L.L. von Sambeek, K.L. DeVries, The influence of seal design on the development of the disturbed rock zone in the WIPP alcove seal tests. RSI-0400, Sandia National Laboratories, Albuquerque, USA (1991).
[69] U.E. Hunsche, Failure behaviour of rock salt around underground cavities. In: H. Kakihana (ed.), Proceedings of the Seventh Symposium on Salt, Kyoto, Elsevier Science Publisher, Amsterdam, 1, 59-65 (1993).
[70] Z . Zhang, D. Jiang, W. Liu, J. Chen et al., Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks. Environ. Earth. Sci. 78, 10, 292 (2019). DOI: https://doi.org/10.1007/s12665-019-8292-2
[71] R . Dadlez, W. Jaroszewski, Tektonika. Wydawnictwo Naukowe PWN Warszawa (1994).
[72] R .D. Lama, V.S. Vutukuri, Handbook on mechanical properties of rocks. Trans. Tech. Publ. III, Zurich, Switzeland (1978).
[73] K. Cyran, T. Toboła, P. Kamiński, Wpływ cech petrologicznych na właściwości mechaniczne soli kamiennej z LGOM (Legnicko-Głogowskiego Okręgu Miedziowego). Biuletyn Państwowego Instytutu Geologicznego 466, 51-63 (2016).
[74] A. Łaszkiewicz, Minerały i skały solne. Prace Muzeum Ziemi 11, 101-188 (1967).
[75] W . Liu, Y.P. Li, Y.S. Huo, X.L. Shi et al., Analysis on deformation and fracture characteristics of wall rock interface of underground storage caverns in salt rock formation. Rock and Soil Mechanics 34, 6, 1621-1628 (2013).
[76] J. Poborski, K. Skoczylas-Ciszewska, O miocenie w strefie nasunięcia karpackiego w okolicy Wieliczki i Bochni. Rocznik Polskiego Towarzystwa Geologicznego 33, 3, 340-347 (1963).
[77] L. Wei, L. Yinping, Y. Chunhe, H. Shuai, W. Bingwu, Analysis of Physical and Mechanical Properties of Impure Salt Rock. 47th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2013, ARMA- 2013-336 (2013).
[78] C.J. Peach, C.J. Spiers, Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock. Tectonophysics 256 (1-4), 101-128 (1996). DOI: https://doi.org/10.1016/0040-1951(95)00170-0
[79] G.M. Pennock, M.R. Drury, C.J. Spiers, The development of subgrain misorientations with strain in dry synthetic NaCl measured using EBSD. J. Struct. Geol. 27, 12, 2159-2170 (2005). DOI: https://doi.org/10.1016/j. jsg.2005.06.013
[80] G.M. Pennock, M.R. Drury, C.J. Peach, C.J. Spiers, The influence of water on deformation microstructures and textures in synthetic NaCl measured using EBSD. J. Struct. Geol. 28, 4, 588-601 (2006). DOI: https://doi.org/10.1016/j.jsg.2006.01.014
[81] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Rheological behaviour of synthetic rock salt: the interplay between water, dynamic recrystallisation and deformation mechanisms. J. Struct. Geol. 27, 948-963 (2005). DOI: https://doi.org/10.1016/j.jsg.2005.04.008
[82] J.H. Ter Heege, J.H.P. De Bresser, C.J. Spiers, Dynamic recrystallisation of wet synthetic polycrystalline halite: dependence of grain size distribution on flow stress, temperature and strain. Tectonophysics 396, 1-2, 35-57 (2005). DOI: https://doi.org/10.1016/j.tecto.2004.10.002
[83] N .L. Carter, F.D. Hansen, Creep of rock salt. Tectonophysics 92, 275-333 (1983). DOI: https://doi.org/10.1016/0191-8141(93)90168-A
[84] S.J. Bauer, B. Song, B. Sanborn, Dynamic compressive strength of rock salts. Int. J. Rock Mech. Min. Sci. 113, 112-120 (2019). DOI: https://doi.org/10.1016/j.ijrmms.2018.11.004
[85] K. Liang, L.Z. Xie, B. He, P. Zhao et al., Effects of grain size distributions on the macro-mechanical behavior of rock salt using micro-based multiscale methods. Int. J. Rock Mech. Min. Sci. 138, 104592 (2021). DOI: https://doi.org/10.1016/j.ijrmms.2020.104592
[86] S.Y. Li, J.L. Urai, Rheology of rock salt for salt tectonics modelling. Petrol. Sci. 13, 712-724 (2016). DOI: https://doi.org/10.1007/s12182-016-0121-6
[87] Z . Schléder, J.L. Urai, Deformation and recrystallisation mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J. Struct. Geol. 29, 241-255 (2007). DOI: https://doi.org/10.1016/j.jsg.2006.08.014
[88] C.J. Spiers, PM.T.M. Schutjens, R.H. Brzesowsky, C.J. Peach et al., Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: R.J. Knipe, E.H. Rutter (eds.) Deformation mechanisms, rheology and tectonics. Geological Society, London, Special Publications 54, 1, 215-27 (1990).
[89] J.L. Urai, C.J. Spiers, H.J. Zwart, G.S. Lister, Weakening of rock salt by water during long-term creep. Nature 324, 554-557 (1986). DOI: https://doi.org/10.1038/324554a0
[90] J.L. Urai, C.J. Spiers, C.J. Peach, R.C.M.W. Franssen, J.L. Liezenberg, Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geology en Mijnbouw 66, 165-176 (1987).
[91] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on the uniaxial compressive strength of pre-fatigued rocksalt from Himachal Pradesh, India. Int. J. Rock Mech. Min. Sci. 37, 993-999 (2000). DOI: https://doi.org/10.1016/S1365-1609(00)00020-4
[92] R .K. Dubey, V.K. Gairola, Influence of structural anisotropy on creep of rocksalt from Simla Himalaya, India: an experimental approach. J. Struct. Geol. 30, 6, 710-718 (2008). DOI: https://doi.org/10.1016/j.jsg.2008.01.007
[93] R .A. Lebensohn, P.R. Dawson, H.M. Kern, H.R. Wenk, Heterogeneous deformation and texture development in halite polycrystals: comparison of different modelling approaches and experimental data. Tectonophysics 370 (1-4), 287-311 (2003). DOI: https://doi.org/10.1016/S0040-1951(03)00192-6
[94] J.R. Hirth, L. Kubin (Eds), Dislocations in solids. The 30th anniversary volume. Elsevier (2009).
[95] M.P.A. Jakson, M.R. Hudec, Salt tectonics principles and practice. Cambridge University Press (2017).
[96] D .R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials. Cengage Learning Inc. (2010).
[97] J. Wichert, H. Konietzky, C. Jakob, Salt Mechanics. TU Bergakademie Freiberg, Institut für Geotechnik, Freiberg (2018).
[98] G. Wang, A new constitutive creep-damage model for salt rock and its characteristics. Int. J. Rock Mech. Min. Sci. 41, 61-67 (2004). DOI: https://doi.org/10.1016/j.ijrmms.2004.03.020
[99] Z . Hou, Untersuchungen zum Nachweis der Standsicherheit für Untertagedeponien im Salzgebirge. Technische Universität Clausthal, Professur für Deponietechnik und Geomechanik. Papierflieger (1997).
[100] U. Hunsche, O. Schulze, Das Kriechverhalten von Steinsalz. Kali und Steinsalz, 11, 238-255 (1994).
[101] K.H. Lux, Gebirgsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau: ein Beitrag zur Entwicklung von Prognosemodellen für den Hohlraumbau im duktilen Salzgebirge. F. Enke Verlag (1984).
[102] R .M. Günther, Erweiterter Dehnungs-Verfestigungs-Ansatz: phänomenologisches Stoffmodell für duktile Salzgesteine zur Beschreibung primären, sekundären und tertiären Kriechens. Ph.D. dissertation, Institut für Geotechnik, Technische Universität Bergakademie Freiberg (2009).
[103] C. Missal, A. Gährken, J. Stahlmann, Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz. BMBF-Verbundvorhaben, Einzelbericht zum Teilvorhaben (2016).
[104] D .E. Munson, Preliminary deformation mechanism map for salt (with application to WIPP). Sandia Rep. SAND 79-0076 (1979).
[105] D .E. Munson, P.R. Dawson, Constitutive model for the low temperature creep of salt (with application to WIPP). Sandia Rep. SAND 79-1853 (1979).
[106] D .E. Munson, Constitutive model of creep in polycrystalline halite based on workhardening and recovery. International Symposium on Plasticity and its Current Applications. Baltimore, MD (United States) (1993).
[107] N .L. Carter, S.T. Horseman, J.E. Russell, J. Handin, Rheology of rock salt. J. Struct. Geol. 15, 9, 1257-1271 (1993). DOI: https://doi.org/10.1016/0191-8141(93)90168-A
[108] F .D. Hansen, P. E. Senseny, T.W. Pfeifle, T.J. Vogt, Influence of impurities on the creep of salt from the Palo Duro basin. 29th U.S. Symposium on Rock Mechanics (USRMS), June 1988, Minneapolis, Minnesota (1988).
[109] D .E. Munson, Analysis of Multistage and other creep data from domal salts. SANDIA report 98-2276 (1998).
[110] T .W. Pfeifle, T.J. Vogt, G.A. Brekken, Correlation of Chemical, Mineralogic, and Physical Characteristics of Gulf Coast Dome Salt to Deformation and Strength Properties. Solution Mining Research Institute Report no. 94-0004-5 (1995).
[111] A. Pouya, Correlation Between Mechanical Behaviour And Petrological Properties of Rock Salt. In: J.C. Roegiers (ed.), Proceedings of 32nd US symposium on rock mechanics 385-92. Balkema, Rotterdam, ARMA-91-385 (1991).
[112] J. Ślizowski, S. Nagy, S. Burliga, K. Serbin, K. Polański, Laboratory investigations of geotechnical properties of rock salt in Polish salt deposits. In: R.L., Mellegard K., Hansen F. (eds.) Mechanical behavior of salt VIII: Proceedings of the Conference on Mechanical Behavior of Salt, SALTMECH VIII : Rapid City, USA, 26-28 May 2015, CRC Press Taylor & Francis Group, 33-38 (2015).
[113] U. Hunsche, Determination of the dilatancy boundary and damage up to failure for four types of rock salt at different stress geometries. In: Aubertin, M., Hardy Jr., H.R. (Eds.), The Mechanical Behavior of Salt IV; Proc. of the Fourth Conf., (MECASALT IV), Montreal 1996. TTP Trans Tech Publications, Clausthal, 163-174 (1998).
[114] C. Du, C.H. Yang, H.L. Ma, X.L. Shi, J. Chen, Study of creep characteristics of deep rock salt. Rock and Soil Mechanics 33, 8, 2451-2520 (2012).
[115] X.D. Qui, Y. Jiang, Z.L. Yan, Q.C. Zhuang, Creep damage failure of rock salt. Journal of Chongqing University 26, 3,106-109 (2003).
[116] J.W. Hustoft, R.D. Arnold, L.A. Roberts, Effects of sylvite and carnallite content on creep behavior of potash. SMRI Spring Technical Conference 23-24 April 2012, Regina, Saskatchewan, Canada (2012).
[117] L.J. Ma, H.F. Xu, M.Y. Wang, E.B. Li, Numerical study of gas storage stability in bedded rock salt during the complete process of operating pressure runaway. Chinese Journal of Rock Mechanics and Engineering 34, S2, 4108-4115 (2015).
[118] M.M. Tang, Z.Y. Wang, G.S. Ding, Z.N. Ran, Creep property experiment and constitutive relation of salt-mudstone interlayer. Journal of China Coal Society 35, 1, 42-45 (2010).
[119] Z .W. Zhou, J.F. Liu, F. Wu, L. Wang et al., Experimental study on creep properties of salt rock and mudstone from bedded salt rock gas storage. Journal of Sichuan University (Engineering Science Edition) 48, S1, 100-106 (2016).
[120] W .G. Liang, C.H. Yang, Y.S. Zhao, Physico-mechanical properties and limit operation pressure of gas deposit in bedded salt rock. Chinese Journal of Rock Mechanics and Engineering 27, 1, 22-27 (2008).
[121] Y .L. Zhao, Y. Zhang, W. Wan, Mechanical properties of bedded rock salt and creep failure model. Mineral Engineering Research 25, 1, 6-20 (2010).
[122] C.H. Yang, H.J. Mao, X.C. Wang, X.H. Li, J.W. Chen, Study on variation of microstructure and mechanical properties of water-weakening slates. Rock and Soil Mechanics 27, 6, 2090-2098 (2006). DOI: https://doi.org/10.1201/9781439833469.ch24
[123] J.E. Lindqvist, U. Åkesson, K. Malaga, Microstructure and functional properties of rock materials. Mat. Charact. 58, 1183-1188 (2007). DOI: https://doi.org/10.1016/j.matchar.2007.04.012
[124] X. Shi, Y.F. Cheng, S. Jiang, D.S. Cai, T. Zhang, Experimental study of microstructure and rock properties of shale samples. Chinese Journal of Rock Mechanics and Engineering 33, 3439-3445 (2014).
[125] T. Toboła, K. Cyran, M. Rembiś, Petrological and Microhardness Study on Blue Halite from Kłodawa Salt Dome (central Poland). 9th Conference on the Mechanical Behavior of Salt (SaltMech IX), September 12-14, 2018, Hannover, Germany, (2018).
[126] T. Toboła, K. Cyran, M. Rembiś, Microhardness analysis of halite from different salt-bearing formations. Geol. Quart. 63, 4, 771-785 (2019). DOI: https://doi.org/10.7306/gq.1499
[127] T. Toboła, P. Kukiałka, The Lotsberg Salt formation in Central Alberta (Canada) – petrology, geochemistry and fluid inclusions. Minerals 10, 868 (2020). DOI: https://doi.org/10.3390/min10100868
[128] S. Zelek, K. Stadnicka, J. Szklarzewicz, L. Natkaniec-Nowak, T. Toboła, Halite from Kłodawa: the attempt of correlation between lattice defor mation and spectroscopic properties in UV-VIS. Gospodarka Surowcami Mineralnymi PAN 3, 159-172 (2008).
[129] S. Zelek, K. Stadnicka, T. Toboła, L. Natkaniec-Nowak, Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Mineral. Petrol. 108, 619-631 (2014). DOI: https://doi.org/10.1007/s00710-014-0323-9
[130] A. Tuğrul, I.H. Zarif, Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 51, 4, 303-317 (1999). DOI: https://doi.org/10.1016/S0013-7952(98)00071-4
[131] A.A. Momeni, G.R. Khanlari, M. Heidari, A.A. Sepahi, E. Bazvand, New engineering geological weathering classifications for granitoid rocks. Eng. Geol. 185, 43-51 (2015). DOI: https://doi.org/10.1016/j.enggeo.2014.11.012
[132] E. Cantisani, C.A. Garzonio, M. Ricci, S. Vettori, Relationships between the petrographical, physical and mechanical properties of some Italian sandstones. Int. J. Rock Mech. Min. Sci. 60, 321-332 (2013). DOI: https://doi.org/10.1016/j.ijrmms.2012.12.042

Go to article

Authors and Affiliations

Katarzyna Cyran
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining and Geoengineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Studies of background donor concentration (BDC) in HgCdTe samples grown with different types of technology were performed with the use of ion milling as a means of eliminating the compensating acceptors. In bulk crystals, films grown with liquid phase epitaxy and films fabricated with molecular beam epitaxy (MBE) on Si substrates, BDC of the order of ~1014 cm-3 was revealed. Films grown with metal−organic chemical vapour deposition and with MBE on GaAs substrates showed BDC of the order of ~1015 cm-3. A possibility of assessing the BDC in acceptor (arsenic)−doped HgCdTe was demon− strated. In general, the studies showed the effectiveness of ion milling as a method of reducing electrical compensation in n−type MCT and as an excellent tool for assisting evaluation of BDC.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovsky
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy
S.A. Dvoretsky
Download PDF Download RIS Download Bibtex

Abstract

A source of pure silicon was added into an alloy refining system during a refining process with the application of a direct electric current. The effect of the temperature difference between the graphite electrodes and the alloy was decreased. The temperature increase value (ΔT) of the Al-28.51wt.%Si alloy sample caused by Joule heating was calculated by weighing the mass of primary silicon. When the current density was 5.0×105 A/m2, the overall temperature increase in the alloy was about 90°C regardless of the alloy composition. Adequate silicon atoms recorded the footprint of the electric current in the alloy melt. The flow convection generated by the electric current in the melt during the solidification process resulted in the refinement of primary silicon. The Fe impurity content in alloy refining without the electric current density was 2.16 ppm. However, it decreased to 1.27 ppmw with the application of an electric current density of 5.0×105 A/m2.
Go to article

Authors and Affiliations

Jiayan Li
1 2
Benson Kihono Njuguna
1 2
Ping Ni
1 2
Liang Wang
2 1
Yi Tan
1 2

  1. Dalian University of Technology, School of Materials Science and Engineering, No. 2 Linggong Road, Ganjingzi District, Dalian 116023, China
  2. Dalian University of Technology, Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian 116024, China
Download PDF Download RIS Download Bibtex

Abstract

As a wafer cleaning process, RCA (Radio Corporation of America) cleaning is mainly used. However, RCA cleaning has problems such as instability of bath life, re-adsorption of impurities and high-temperature cleaning. Herein, we tried to improve the purity of silicon wafers by using a chelating agent (oxalic acid) to solve these problems. Compounds produced by the reaction between the cleaning solution and each metal powder were identified by referring to the pourbaix diagram. All metals exhibited a particle size distribution of 10 μm or more before reaction, but a particle size distribution of 500 nm or less after reaction. In addition, it was confirmed that the metals before and after the reaction showed different absorbances. As a result of elemental analysis on the surface of the reclaimed silicon wafer cleaned through such a cleaning solution, it was confirmed that no secondary phase was detected other than Si.
Go to article

Bibliography

[1] K. Liu, D. Zuo, X.P. Li, M. Rahman, J. Vac. Sci. Technol. B: Microelectronics and Nanometer Structures 27 (3), 1361-1366 (2009).
[2] M. Kim, K. Ryu, K.J. Lee, J. Korean Powder Metall. Inst. 28 (1), 25-30 (2021)
[3] W. Kern, J. Electrochem. Soc. 137 (6), 1887-1892 (1990).
[4] O .J. Anttila, J. Electrochem. Soc. 139 (4), 1180-1185 (1992).
[5] K. Saga, J. Electrochem. Soc. 143 (10), 3279-3284 (1996).
[6] M. Itano, F.W. Kern, M. Miyashita, T. Ohmi, IEEE Trans. Semicond. Manuf. 6 (3), 258-267 (1993).
[7] W. Kern, Handbook of silicon wafer cleaning technology, United States 2018.
[8] M. Matsuo, T. Takahashi, H. Habuka, A. Goto, Mat. Sci. Semicon. Proc. 110, 104970 (2020).
[9] G .W. Gale, D.L. Rath, E.I. Cooper, S. Estes, H.F. Okorn-Schmidt, J. Brigante, R. Jagannathan, G. Settembre, E. Adams, J. Electrochem. Soc. 148 (9), G513-G516 (2001).
[10] D. Liu, Z. Li, Y. Zhu, Z. Li, R. Kumar, Carbohydr. Polym. 111, 469-476 (2014).
[11] J.B. Fein, Geology 19 (10), 1037-1040 (1991).
[12] N. Zubair, K. Akhtar, Trans. Nonferrous Met. Soc. China 29 (1), 143-156 (2019).
[13] D. Nansheng, W. Feng, L. Fan, L. Zan, Chemosphere 35 (11), 2697-2706 (1997).
[14] A.K. Sharma, A. Singh, R.K. Mehta, S. Sharma, S.P. Bansal, K.S. Gupta, Int. J. Chem. Kinet. 43 (7), 379-392 (2011).
[15] M.Z. Mubarok, J. Lieberto, Procedia Earth Planet. Sci. 6, 457-464 (2013).
[16] D. Rai, B.M. Sass, D.A. Moore, Inorg. Chem. 26 (3), 345-349 (1987).
[17] C.H. Bamford, R.G. Compton, C.F.H. Tipper, Reactions of metallic salts and complexes, and organometallic compounds, Elsevier 1972.
Go to article

Authors and Affiliations

Keunhyuk Ryu
1
Myungsuk Kim
1
Jaeseok Roh
1
ORCID: ORCID
Kun-Jae Lee
1
ORCID: ORCID

  1. Dankook University, Department of Energy Engineering, Cheonan 31116, Republic of Korea

This page uses 'cookies'. Learn more