Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Sensors designed by Polish engineers help detect traces of life beyond Earth. Adam Piotrowski of Vigo System tells us what else these devices can do.

Go to article

Authors and Affiliations

Adam Piotrowski
Download PDF Download RIS Download Bibtex

Abstract

Germanium (Ge) PiN photodetectors are fabricated and electro-optically characterised. Unintentionally and p-type doped Ge layers are grown in a reduced-pressure chemical vapour deposition tool on a 200 mm diameter, <001>-oriented, p-type silicon (Si) substrates. Thanks to two Ge growth temperatures and the use of short thermal cycling afterwards, threading dislocation densities down to 107 cm−2 are obtained. Instead of phosphorous (P) ion implantation in germanium, the authors use in situ phosphorous-doped poly-crystalline Si (poly-Si) in the n-type regions. Secondary ion mass spectrometry revealed that P was confined in poly-Si and did not diffuse in Ge layers beneath. Over a wide range of tested device geometries, production yield was dramatically increased, with almost no short circuits. At 30 °C and at −0.1 V bias, corresponding to the highest dynamic resistance, the median dark current of 10 µm diameter photodiodes is in the 5–20 nA range depending on the size of the n-type region. The dark current is limited by the Shockley-Read-Hall generation and the noise power spectral density of the current by the flicker noise contribution. A responsivity of 0.55 and 0.33 A/W at 1.31 and 1.55 µm, respectively, is demonstrated with a 1.8 µm thick absorption Ge layer and an optimized anti-reflection coating at 1.55 µm. These results pave the way for a cost-effective technology based on group-IV semiconductors.
Go to article

Authors and Affiliations

Quentin Durlin
1
Abdelkader Aliane
1
Luc André
1
Hacile Kaya
1
Mélanie Le Cocq
1
Valérie Goudon
1
Claire Vialle
1
Marc Veillerot
1
Jean-Michel Hartmann
1

  1. Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the potential of p-type InAs/GaSb superlattice for the fabrication of full mid-wave megapixel detectors with n-on-p polarity. A significantly higher surface leakage is observed in deep-etched n-on-p photodiodes compared to p-on-n diodes. Shallow-etch and two-etch-step pixel geometry are demonstrated to mitigate the surface leakage on devices down to 10 µm with n-on-p polarity. A lateral diffusion length of 16 µm is extracted from the shallow etched pixels, which indicates that cross talk could be a major problem in small pitch arrays. Therefore, the two-etch-step process is used in the fabrication of 1280 × 1024 arrays with a 7.5 µm pitch, and a potential operating temperature up to 100 K is demonstrated.
Go to article

Authors and Affiliations

David Ramos
1 2
Marie Delmas
1
Ruslan Ivanov
1
Laura Žurauskaitė
1
Dean Evans
1
Susanne Almqvist
1
Smilja Becanovic
1
Per-Erik Hellström
2
Eric Costard
1
Linda Höglund
1

  1. IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  2.  School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
Download PDF Download RIS Download Bibtex

Abstract

The performance of HgCdTe barrier detectors with cut-off wavelengths up to 3.6 μm fabricated using metaloorganic chemi- cal vapour deposition operated at high temperatures is presented. The detectors’ architecture consists of four layers: cap contact, wide bandgap barrier, absorber and bottom contact layer. The structures were fabricated both with n- and p-type absorbing layers. In the paper, different design of cap-barrier structural unit (n-Bp′, n+-Bp′, p+-Bp) were analysed in terms of various electrical and optical properties of the detectors, such as dark current, current responsivity time constant and detectivity.

The devices with a p-type cap contact exhibit very low dark current densities in the range of (2÷3)×10-4 A/cm2 at 230 K and the maximum photoresponse of about 2 A/W in wide range of reverse bias voltage. The time constant of measured de- vices with n-type cap contact and p-type absorbing drops below 1 ns with reverse bias while the detectivity is at the level of 1010 cm Hz1/2/W.

Go to article

Authors and Affiliations

Małgorzata Kopytko
ORCID: ORCID
A. Kębłowski
W. Gawron
P. Madejczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper takes a look at the state-of-the-art solutions in the field of spectral imaging systems by way of application examples. It is based on a comparison of currently used systems and the challenges they face, especially in the field of high-altitude imaging and satellite imaging, are discussed. Based on our own experience, an example of hyperspectral data processing is presented. The article also discusses how modern algorithms can help in understanding the data that such images can provide.
Go to article

Authors and Affiliations

Jędrzej Kowalewski
1 2
Jarosław Domaradzki
2
Michał Zięba
1
Mikołaj Podgórski
1 2

  1. Scanway, Dunska 9, 54-427 Wrocław, Poland
  2. Wrocław University of Science and Technology, Faculty of Electronics, Photonics and Microsystems,Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Mid-wavelength infrared detectors and focal plane array based on n-type InAs/InAsSb type-II strained layer superlattice absorbers have achieved excellent performance. In the long and very long wavelength infrared, however, n-type InAs/InAsSb type-II strained layer superlattice detectors are limited by their relatively small absorption coefficients and short growth-direction hole diffusion lengths, and consequently have only been able to achieve modest level of quantum efficiency. The authors present an overview of their progress in exploring complementary barrier infrared detectors that contain p-type InAs/InAsSb type-II strained layer superlattice absorbers for quantum efficiency enhancement. The authors describe some representative results, and also provide additional references for more in-depth discussions. Results on InAs/InAsSb type-II strained layer superlattice focal plane arrays for potential NASA applications are also briefly discussed.
Go to article

Authors and Affiliations

David Z. Ting
1
Alexander Soibel
1
Arezou Khoshakhlagh
1
Sam A. Keo
1
Sir B. Rafol
1
Anita M. Fisher
1
Cory J. Hill
1
Brian J. Pepper
1
Yuki Maruyama
1
Sarath D. Gunapala
1

  1. NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109-8099, USA
Download PDF Download RIS Download Bibtex

Abstract

Infrared thermal imaging, using cooled and uncooled detectors, is continuously gaining attention because of its wide military and civilian applications. Futuristic requirements of high temperature operation, multispectral imaging, lower cost, higher resolution (using pixels) etc. are driving continuous developments in the field. Although there are good reviews in the literature by Rogalski [1–4], Martyniuk et al. [5] and Rogalski et al. [6] on various types of infrared detectors and technologies, this paper focuses on some of the important recent trends and diverse applications in this field and discusses some important fundamentals of these detectors.

Go to article

Authors and Affiliations

R.K. Bhan
V. Dhar
Download PDF Download RIS Download Bibtex

Abstract

Non−uniformity noise, it was, it is, and it will probably be one of the most non−desired attached companion of the infrared focal plane array (IRFPA) data. We present a higher order filter where the key advantage is based in its capacity to estimates the detection parameters and thus to compensate it for fixed pattern noise, as an enhancement of Constant Statistics (CS) theory. This paper shows a technique to improve the convergence in accelerated way for CS (AACS: Acceleration Algorithm for Constant Statistics). The effectiveness of this method is demonstrated by using simulated infrared video sequences and several real infrared video sequences obtained using two infrared cameras

Go to article

Authors and Affiliations

A.G. Jara-Chavez
F.O. Torres-Vicencio
Download PDF Download RIS Download Bibtex

Abstract

This paper presents examples of infrared detectors with mercury cadmium telluride elaborated at the Institute of Applied Physics, Military University of Technology and VIGO Photonics S.A. Fully doped HgCdTe epilayers were grown with the metal organic chemical vapour deposition technique which provides a wide range of material composition covering the entire infrared range from 1.5 µm to 14 µm. Fundamental issues concerning the design of individual areas of the heterostructure including: the absorber, contacts, and transient layers with respect to their thickness, doping and composition were discussed. An example of determining the gain is also given pointing to the potential application of the obtained devices in avalanche photodiode detectors that can amplify weak optical signals. Selected examples of the analysis of current-voltage and spectral characteristics are shown. Multiple detectors based on a connection in series of small individual structures are also presented as a solution to overcome inherent problems of low resistance of LWIR photodiodes. The HgCdTe detectors were compared with detectors from III-V materials. The detectors based on InAs/InAsSb superlattice materials achieve very comparable parameters and, in some respects, they are even superior to those with mercury cadmium telluride.
Go to article

Authors and Affiliations

Paweł Madejczyk
1
ORCID: ORCID
Waldemar Gawron
1 2
ORCID: ORCID
Jan Sobieski
2
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. Vigo Photonics S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work investigates the potential of InAs/GaSb superlattice detectors for the short-wavelength infrared spectral band. A barrier detector structure was grown by molecular beam epitaxy and devices were fabricated using standard photolithography techniques. Optical and electrical characterisations were carried out and the current limitations were identified. The authors found that the short diffusion length of ~1.8 µm is currently limiting the quantum efficiency (double-pass, no anti-reflection coating) to 43% at 2.8 µm and 200 K. The dark current density is limited by the surface leakage current which shows generation-recombination and diffusion characters below and above 195 K, respectively. By fitting the size dependence of the dark current, the bulk values have been estimated to be 6.57·10−6 A/cm2 at 200 K and 2.31·10−6 A/cm2 at 250 K, which is only a factor of 4 and 2, respectively, above the Rule07.
Go to article

Authors and Affiliations

Marie Delmas
1
David Ramos
1 2
Ruslan Ivanov
1
Laura Žurauskaitė
1
Dean Evans
1
David Rihtnesberg
1
Susanne Almqvist
1
Smilja Becanovic
1
Eric Costard
1
Linda Höglund
1

  1.  IRnova AB, Isafjordsgatan 22, Kista 164 40, Sweden
  2. School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Isafjordsgatan 22, Kista 164 40, Sweden
Download PDF Download RIS Download Bibtex

Abstract

As long as high resolution or long-range observation is to be achieved using infrared detection, it will be necessary to cool down the detector in order to reach the best sensitivity and dynamics. This paper describes different cooling solutions currently used for this purpose discussing advantages and drawbacks. Some guideline is given for cooler choice and selection. The focus is on rotary Stirling coolers illustrated by description of the RMs1 cooler dedicated to high operating temperature size, weight, and power infrared detectors. A user case study is presented with cooler power consumption and cool down time of the RMs1 cooler when integrated in IRnova’s Oden MW IDDCAs.
Go to article

Authors and Affiliations

René Griot
1
Christophe Vasse
1
Roel Arts
2
Ruslan Ivanov
3
Linda Höglund
3
Eric Costard 
3

  1. Thales LAS France, 4 rue Marcel Doret, 31700 Blagnac, France
  2. Thales Cryogenics bv, Hooge Zijde 14, 5626 DC Eindhoven, The Netherlands
  3.  IRnova, Isafjordsgatan 26, SE-164 40 Kista, Sweden
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Numerical analysis of the dark current (Jd) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity.

Go to article

Bibliography

  1. Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infra-red InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
  2. Olson, B. et al. Identification of dominant recombination mecha-nisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013). https://doi.org/10.1063/1.4817400
  3. White, M., 1983. Infrared Detectors. U.S. Patent 4,679,063.
  4. Klipstein, P., 2003. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640.
  5. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  6. Ting, D. Z.-Y. et al. Chapter 1 - Type-II Superlattice Infrared Detectors. in Advances in Infrared Photodetectors (eds. Gunapala, S. D., Rhiger, D. R. & Jagadish, C.) vol. 84 1–57 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
  7. Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40–45 (2016).https://doi.org/10.1515/oere-2016-0007
  8. Benyahia, D. et al. Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Opt. Quant. Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
  9. Vurgaftman, I., Meyer, J. & Ram-Mohan, L. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156
  10. Birner, S. Modelling of semiconductor nanostruc¬tures and semiconductor-electrolyte interfaces. Ph.D. dissertation (Universität München, Germany, 2011).
  11. Chuang, Sh. L. Physics of optoelectronic devices. (Wiley, New York, 1995).
  12. Van de Walle, C. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989). https://doi.org/10.1103/PhysRevB.39.1871
  13. Kopytko, M. et al. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 27, 37 (2019), https://doi.org/10.3390/proceedings2019027037
  14. Hazbun, R. et al. Theoretical study of the effects of strain balancing on the bandgap of dilute nitride InGaSbN/InAs superlattices on GaSb substrates. Infrared Phys. Technol. 69, 211–217 (2015). https://doi.org/10.1016/j.infrared.2015.01.023
  15. Livneh, Y. et al. k-p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311
  16. Yu, P. & Cardona, M. Fundamentals of semicon-ductors: Physics and materials properties, 4th edn. (Springer, Heidelberg, 2010).
  17. Adachi, S. Properties of group – IV, III-V and II-VI Semicon-ductors. (Wiley, London, 2005).
  18. Manyk, T. et al. Method of electron affinity evalua¬tion for the type-2 InAs/InAs1-xSbx superlattice. J. Mater. Sci. 55, 5135–5144 (2020). https://doi.org/10.1007/s10853-020-04347-6
Go to article

Authors and Affiliations

Małgorzata Kopytko
1
ORCID: ORCID
Emilia Gomółka
1
ORCID: ORCID
Tetiana Manyk
1
ORCID: ORCID
Krystian Michalczewski
2
ORCID: ORCID
Łukasz Kubiszyn
2
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Go to article

Authors and Affiliations

Krzysztof Murawski
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The quantum efficiency of an InAs/InAsSb type-II superlattice (T2SL) high operating temperature (HOT) long-wavelength infrared (LWIR) photodetector may be significantly improved by integrating a two-dimensional subwavelength hole array in a metallic film (2DSHA) with the detector heterostructure. The role of the metallic grating is to couple incident radiation into surface plasmon polariton (SPP) modes whose field overlaps the absorber region. Plasmon-enhanced infrared photodetectors have been recently demonstrated and are the subject of intensive research. Optical modelling of the three-dimensional detector structure with subwavelength metallic components is challenging, especially since its operation depends on evanescent wave coupling. Our modelling approach combines the 3D finite-difference time-domain method (FDTD) and the rigorous coupled wave analysis (RCWA) with a proposed adaptive data-point selection for calculation time reduction. We demonstrate that the 2DSHA-based detector supports SPPs in the Sommerfeld-Zenneck regime and waveguide modes that both enhance absorption in the active layer.
Go to article

Authors and Affiliations

Andrzej Janaszek
1 2
ORCID: ORCID
Piotr Wróbel
2
ORCID: ORCID
Maciej Dems
3
ORCID: ORCID
Omer Ceylan
4
ORCID: ORCID
Yasar Gurbuz
4
ORCID: ORCID
Łukasz Kubiszyn
5
ORCID: ORCID
Józef Piotrowski
6
ORCID: ORCID
Rafał Kotyński
2
ORCID: ORCID

  1. Janaszek, Andrzej :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  2. Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
  3. Institute of Physics, Lodz University of Technology, Wólczańska 217/221, 93-005 Łódź, Poland
  4. Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
  5. Kubiszyn, Łukasz :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
  6. Piotrowski, Józef :VIGO Photonics, Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

Go to article

Authors and Affiliations

Łukasz Ciura
Andrzej Kolek
Waldemar Gawron
Andrzej Kowalewski
Dariusz Stanaszek
Download PDF Download RIS Download Bibtex

Abstract

The hyperspectral thermal imaging instrument for technology demonstration funded by NASA’s Earth Science Technology Office under the In-Space Validation of Earth Science Technologies program requires focal plane array with reasonably good performance at a low cost. The instrument is designed to fit in a 6U CubeSat platform for a low-Earth orbit. It will collect data on hydrological parameters and Earth surface temperature for agricultural remote sensing. The long wavelength infrared type-II strain layer superlattices barrier infrared detector focal plane array is chosen for this mission. With the driving requirement dictated by the power consumption of the cryocooler and signal-noise-ratio, cut-off wavelengths and dark current are utilized to model instrument operating temperature. Many focal plane arrays are fabricated and characterised, and the best performing focal plane array that fulfils the requirements is selected. The spectral band, dark current and 8–9.4 m pass band quantum efficiency of the candidate focal plane array are: 8–10.7 m, 2.1∙10−5 A/cm2, and 47%, respectively. The corresponding noise equivalent difference temperature and operability are 30 mK and 99.7%, respectively. Anti-reflective coating is deposited on the focal plane array surface to enhance the quantum efficiency and to reduce the interference pattern due to an absorption layer parallel surfaces cladding material.
Go to article

Authors and Affiliations

Sir B. Rafol
1
Sarath D. Gunapala
1
David Z. Ting 
1
Alexander Soibel
1
Arezou Khoshakhlagh
1
Sam A. Keo
1
Brian J. Pepper 
1
Cory J. Hill
1
Yuki Maruyama
1
Anita M. Fisher 
1
Ashok Sood
2
John Zeller 
2
Robert Wright
3
Paul Lucey
3
Miguel Nunes
3
Luke Flynn
3
Sachidananda Babu
4
Parminder Ghuman
4

  1. Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  2. Magnolia Optical Technologies, Inc, Albany New York 12203, USA
  3. Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
  4. NASA Earth Science Technology Office Greenbelt, Maryland, USA
Download PDF Download RIS Download Bibtex

Abstract

The sensitivity of III-V-based infrared detectors is critically dependent upon the carrier concentration and mobility of the absorber layer, and thus, accurate knowledge of each is required to design structures for maximum detector performance. Here, measurements of the bulk in-plane resistivity, in-plane mobility, and carrier concentration as a function of temperature are reported for non-intentionally doped and Si-doped mid-wave infrared InAs0.91Sb0.09 alloy and InAs/InAs0.65Sb0.35 type-II superlattice materials grown on GaSb substrates. Standard temperature- and magnetic-field-dependent resistivity and the Hall measurements on mesa samples in the van der Pauw configuration are performed, and multi-carrier fitting and modelling are used to isolate transport of each carrier species. The results show that up to 5 carrier species of the surface, interface and bulk variety contribute to conduction, with bulk electron and hole mobility up to 2·105 cm2/V s and 8·103 cm2/V s, respectively and background dopant concentration levels were between 1014 and 1015 cm−3. The in-plane mobility temperatures dependence is determined and trends of each carrier species with temperature and dose are analysed.
Go to article

Authors and Affiliations

Christian P. Morath
1
ORCID: ORCID
Lilian K. Casias 
2
ORCID: ORCID
Gilberto A. Umana-Membreno 
3
ORCID: ORCID
Preston T. Webster
1
Perry C. Grant 
1
ORCID: ORCID
Diana Maestas
1
Vincent M. Cowan
1
ORCID: ORCID
Lorenzo Faraone 
3
ORCID: ORCID
Sanjay Krishna 
4
ORCID: ORCID
Ganesh Balakrishnan
5
ORCID: ORCID

  1. U.S. Air Force Research Lab Space Vehicles Directorate, 3550 Kirtland AFB, 427 Aberdeen Ave., NM 87117, USA
  2. Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87185, USA
  3. School of Electrical, Electronic, and Computer Engineering, The University of Western Australia, 25 Fairway, Crawley WA 6009, Australia
  4. Department of Electrical Engineering, The Ohio State University, 2015 Neil Ave., Columbus, OH 43210, USA
  5. Center for High Technology Materials, University of New Mexico, 1313 Goddard St. SE, Albuquerque, NM 87106, USA
Download PDF Download RIS Download Bibtex

Abstract

In the last decade several papers have announced usefulness of two-dimensional materials for high operating temperature photodetectors covering long wavelength infrared spectral region. Transition metal dichalcogenide photodetectors, such as PdSe 2/MoS 2 and WS 2/HfS 2 and WS 2/HfS 2 heterojunctions, have been shown to achieve record detectivities at room temperature (higher than HgCdTe photodiodes). Under these circumstances, it is reasonable to consider the advantages and disadvantages of two-dimensional materials for infrared detection. This review attempts to answer the question thus posed.
Go to article

Bibliography

  1. Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  2. Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  3. Rogalski, A. Quantum well photoconductors in infrared detector technology. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  4. Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  5. Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  6. Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  7. Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  8. Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  9. Holst  C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  10. Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Eng. 51, 096401-1–10 (2012).
  11. Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  12. Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdx J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  13. Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1−xCd x J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  14. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962−2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  15. Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  16. Lee, D. et al. Law 19: the ultimate photodiode performance metric. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  17. Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  18. Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  19. Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  20. Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  21. Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel,  D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  22. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  23. Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  24. Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  25. Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  26. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  27. Du, S. et al. A broadband fluorographene photodetector. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  28. Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  29. Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  30. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  31. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://org/10.1038/s41565-020-0717-2
  32. VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  33. Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_shortform_Dec2002.pdf (2002).
  34. Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  35. Huang, et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  36. Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  37. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  38. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  39. Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  40. Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  41. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  42. Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  43. Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  44. Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  45. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  46. Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  47. An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  48. Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  49. Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  50. Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  51. Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  52. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  53. IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS
    _MM.pdf
    (2018).
Go to article

Authors and Affiliations

Antoni Rogalski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

In the past decade, there has been significant progress in development of the colloidal quantum dot (CQD) photodetectors. The QCD’s potential advantages include: cheap and easy fabrications, size-tuneable across wide infrared spectral region, and direct coating on silicon electronics for imaging, which potentially reduces array cost and offers new modifications like flexible infrared detectors. The performance of CQD high operating temperature (HOT) photodetectors is lower in comparison with detectors traditionally available on the global market (InGaAs, HgCdTe and type-II superlattices). In several papers their performance is compared with the semiempirical rule, “Rule 07” (specified in 2007) for P-on-n HgCdTe photodiodes. However, at present stage of technology, the fully-depleted background limited HgCdTe photodiodes can achieve the level of room-temperature dark current considerably lower than predicted by Rule 07. In this paper, the performance of HOT CQD photodetectors is compared with that predicted for depleted P-i-N HgCdTe photodiodes. Theoretical estimations are collated with experimental data for both HgCdTe photodiodes and CQD detectors. The presented estimates provide further encouragement for achieving low-cost and high performance MWIR and LWIR HgCdTe focal plane arrays operating in HOT conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

Infrared detector technologies engineered from III-V semiconductors such as strained-layer superlattice, quantum well infrared photodetectors, and quantum dot infrared photodetectors provide additional flexibility to engineer bandgap or spectral response cut-offs compared to the historical high-performance detector technology of mercury/cadmium/telluride. The choice of detector cut-off depends upon the sensing application for which the system engineer is attempting to maximize performance within an expected ensemble of operational scenarios that define objects or targets to be detected against specific environmental backgrounds and atmospheric conditions. Sensor performance is typically characterised via one or more metrics that can be modelled or measured experimentally. In this paper, the authors will explore the impact of detector cut-off wavelength with respect to different performance metrics such as noise equivalent temperature difference and expected target detection or identification ranges using analytical models developed for several representative sensing applications encompassing a variety of terrestrial atmospheric conditions in the mid-wave and long-wave infrared wavelength bands. The authors will also report on their review of recently published literature concerning the relationships between cut-off wavelength and the other detector performance characteristics such as quantum efficiency or dark current for a variety of detector technologies.
Go to article

Authors and Affiliations

Jonathan Ch. James
1
ORCID: ORCID
Terence L. Haran
1
Sarah E. Lane
1

  1. Electro-Optical Systems Laboratory, Georgia Tech Research Institute, 925 Dalney St. NW, Atlanta, GA 30332, USA

This page uses 'cookies'. Learn more