Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 76
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast

microstructure obtained in the sampler TDA-10, that was cooling down in ambient air. The study was conducted for silumin AlSi11

unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the solidification

process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the base of thermal

curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple. Test results by

TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of neareutectic silumin.

Go to article

Authors and Affiliations

R. Władysiak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.

Go to article

Authors and Affiliations

P. Lichy
V. Bednarova
T. Elbel
Download PDF Download RIS Download Bibtex

Abstract

This article presents the preparation of composite casts made using the technology of precise casting by the method of melted models. The composite was reinforced with the ceramic sinter from Al2O3 particle shaped in a printed polystyrene female mould, which was fired together with precured ceramics. The resulting ceramic preform, after being saturated with paraffin and after the filling system is installed, was filled with liquid moulding sand and fired together with the mould. The reinforcement was saturated by means of the counter-pressure exerting action on the metal column, being a resultant of pressures inside and outside the chamber. The preliminary assessment showed no apparent defects in the shape of the cast. The casting was measured and the figures were compared with the dimensions of the matrix in which the reinforcing preform was made, the preform after firing and after saturation with paraffin. The results were presented in a table and dimensional deviations were determined. The composite casting was subjected to metallographic tests, which excluded any porous defects or damage to the reinforcement. It can therefore be said that, according to the predictions resulting from the previous calculations, the pressure values used allowed for complete filling of the reinforcement capillaries. The proposed method is therefore suitable for the preparation of precision composite castings with complex shapes.

Go to article

Authors and Affiliations

P. Szymański
K. Gawdzińska
D. Nagolska
Download PDF Download RIS Download Bibtex

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
J. Kusiński
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new

parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and

deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be

characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry

processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws,

caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high

resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this

property, presents methods of measuring and continues earlier research.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The dimensional accuracy of a final casting of Inconel 738 LC alloy is affected by many aspects. One of them is the choice of method and time of cooling the wax model for precision investment casting. The main objective of this work was to study the initial deformation of the complex shape of a rotor blades casting. Various approaches have been tested for cooling a wax pattern. When wax models are air cooled and without clamping in the jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm) and most are in extreme positions of the model. When the blade is cooled in the fixing jig in a water environment, the resulting deviations compared to those of air cooling are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with the usage of wax models, which have smaller deviations from the ideal position. Another deformation occurs when the shell mould is produced around the wax pattern and further deformations emerge while cooling the blade casting. This paper demonstrates the first steps in describing the complex process of deformations occurring in Inconel alloy blades produced with investment casting technology by comparing results of thermal imagery, simulations in foundry simulation software ProCAST 2010, and measurements from a CNC scanning system using a Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems that deformations of the wax pattern and deformations of the castings do in some cases cancel each other by having opposite directions. Describing the whole process of deformations will help increase the precision of blade castings so that the models at the beginning and the blades in the end are the same.

Go to article

Authors and Affiliations

A. Herman
M. Česal
P. Mikeš
Download PDF Download RIS Download Bibtex

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.

Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
K. Major-Gabryś
J. Kamińska
A. Grabarczyk
M. Angrecki
Download PDF Download RIS Download Bibtex

Abstract

Silicon bronzes are characterised by good mechanical properties and by high corrosion and mechanical wear resistance. The process of sleeve casting by means of the centrifugal casting with the horizontal axis of the mould rotation was analysed. The assessment of the influence of modification and centrifugal casting parameters on the microstructure and mechanical properties of alloys was carried out in the hereby work. Zirconium was applied as a modifier. Speed of rotation of the mould was the variable parameter of the centrifugal casting. The investigation results were summarised on the basis of the microstructure analysis and mechanical properties determination: UTS, proof stress, A10 and BHN. The experiment aimed at finding the information in which way the modification together with changing the pouring parameters influence the mechanical properties of the CuSi3Zn3FeMn alloy.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
J. Kozana
M. Piękoś
M. Papaj
P. Papaj
M. Perek-Nowak
Download PDF Download RIS Download Bibtex

Abstract

Examples of cast grates whose construction was based on previously used "old" patterns of the technological equipment for heat treatment furnaces (TEq) are presented. Manufacturers of this type of castings have at their disposal numerous earlier designs of the applied TEq. Their adaptation for the needs of a new order, i.e. the creation of a new design or modification of the already existing one, significantly reduces both cost and time of the implementation. It also allows making new grate constructions of various shapes and sizes, reducing in this way the number of patterns stored by the manufacturer of castings. The examples of cast grates shown and discussed in this study document the variety of ways that can be used when making them from the already existing patterns or castings. The presented grates were made using master patterns, entire castings or their fragments, and modular segments.

Go to article

Authors and Affiliations

B. Piekarski
A. Drotlew
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the porosity of

castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by

means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. Additionally, for

the purpose of comparison, the porosity of specimens cut out directly of the MgAl9Zn1 ingot alloy was also determined. The examinations

consisted in the qualitative assessment of porosity by means of the optical microscopy and its quantitative determination by the method of

weighting specimens in air and in water. It was found during the examination that the porosity of castings decreases with an increase in the

home scrap fraction in the metal charge. The qualitative examinations confirmed the beneficial influence of the increased home scrap

fraction on the porosity of castings. It was concluded that the reusing of home scrap in a foundry can be a good way of reduction of costs

related to the production of pressure castings.

Go to article

Authors and Affiliations

Z. Konopka
M. Łągiewka
A. Zyska
A. Chojnacki
Download PDF Download RIS Download Bibtex

Abstract

The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting

efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization

process and microstructure of multicomponent synthetic hypereutectic alloy AlSi20CuNiCoMg. The study was conducted for unmodified

silumin on the research station allowing the cooling of the special permanent sampler using a program of computer control. Furthermore,

the study used a thermal imaging camera to analyze the solidification process of multicomponent alloy. The study demonstrated that the

use of mold cooled with water mist stream allows in wide range to form the microstructure of hypereutectic multicomponent silumin. It

leads to higher homogeneity of microstructure and refinement of crystallizing phases of casting.

Go to article

Authors and Affiliations

R. Władysiak
T. Pacyniak
A. Kozuń
K. Dębowska
Download PDF Download RIS Download Bibtex

Abstract

The aim of research was creation of a furnace for aluminum alloys smelting “in a liquid bath” in order to reduce metal loss. In the paper,

the author demonstrates the results of research on smelting of aluminum alloys in a shaft-reverberatory furnace designed by the author. It

has been shown that smelting aluminum alloy in a liquid bath was able to significantly reduce aluminum loss and that shaft-reverberatory

design provided high efficiency and productivity along with lower energy costs. Ensuring continuous operation of the liquid bath and

superheating chamber, which tapped alloy with the required texture, was achieved by means of the optimal design of partition between

them. The optimum section of the connecting channels between the liquid bath of smelting and the superheating chamber has been

theoretically substantiated and experimentally confirmed. The author proposed a workable shaft-reverberatory furnace for aluminum

alloys smelting, providing solid charge melting in a liquid bath.

Go to article

Authors and Affiliations

V. Grachev
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of examinations concerning the influence of various amounts of home scrap additions on the properties of

castings made of MgAl9Zn1 alloy. The fraction of home scrap in the metal charge ranged from 0 to 100%. Castings were pressure cast by

means of the hot-chamber pressure die casting machine under the industrial conditions in one of the domestic foundries. The examinations

consisted in the determination of the following properties: tensile strength Rm, yield strength Rp0.2, and the unit elongation A5, all being

measured during the static tensile test. Also, the hardness measurements were taken by the Brinell method. It was found that the

mechanical properties (mainly the strength properties) are being improved up to the home scrap fraction of 50%. Their values were

increased by about 30% over this range. Further rise in the home scrap content, however, brought a definite decrease in these properties.

The unit elongation A5 exhibited continual decrease with an increase in the home scrap fraction in the metal charge. A large growth of

hardness was noticed for the home scrap fraction increasing up to the value of 50%. Further increasing the home scrap percentage,

however, did not result in a significant rise of the hardness value any more.

Go to article

Authors and Affiliations

Z. Konopka
A. Zyska
A.C. Chojnacki
M. Lagiewka
Download PDF Download RIS Download Bibtex

Abstract

Growing emission requirements are forcing the foundry industry to seek new, more environmentally friendly solutions. One of the

solutions may be the technologies of preparing moulding and core sands using organic biodegradable materials

as binders. However, not only environmental requirements grow but also those related to the technological properties

of moulding sand. Advancing automation and mechanization of the foundry industry brings new challenges related to the moulding sands.

Low elasticity may cause defects during assembly of cores or moulds by the manipulators.

The paper presents the study of flexibility in the room temperature according to new method and resistance to thermal deformation of selfhardening

moulding sands with furfuryl resin, containing biodegradable material PCL. The task of the new additive is to reduce the

moulding sands harmfulness to the environment and increase its flexibility in the room temperature. The impact of the additive and the

effect of the amount of binder on the properties of mentioned moulding sands were analysed. Studies have shown that the use of 5% of

PCL does not change the nature of the thermal deformation curve, improves the bending strength of tested moulding mixtures and

increases their flexibility at room temperature.

Go to article

Authors and Affiliations

A. Grabarczyk
K. Major-Gabryś
St.M. Dobosz
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns experimental work studying chemical composition, structures and selected mechanical properties of castings produced by rheocasting method SEED. After previous experiments, which showed inclusions in the primary phase α(Al) when observing structures, hypothesis of external nuclei was taken. The main goal of the work was to determine the influence of inoculation by various additions of titanium/boron based inoculant on the structure and properties of AlSi7Mg0,3 alloy. The master alloy AlTi5B1 was added in amounts of 0,05, 0,1, 0,15, 0,2 wt %. Metallographic observation by light and SEM microscopy was used for analysing the structures. Measurements of grain size were realised and evaluated. Brinell hardness measurements were performed. Chemical composition was measured by GDS analysis. Undertaken experiments did not prove the effect of inoculation of combined AlTi5B1 master alloy on castings made of AlSi7Mg0,3 alloy made by rheocasting SEED at given amounts and conditions.

Go to article

Authors and Affiliations

B. Bryksí Stunová
V. Bryksí
J. Vítková
Download PDF Download RIS Download Bibtex

Abstract

The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140oC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
Go to article

Authors and Affiliations

K.A. Major-Gabryś
S.M. Dobosz
A.P. Grabarczyk
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.

Go to article

Authors and Affiliations

J. Kolczyk
Ł. Jamrozowicz
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys using

multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic

hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified

AlSi20 alloy and modified with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a

dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream allows the formation

of the microstructure of hypereutectic silumins. A wide range of solidification temperature of hypereutectic silumins increases the

potential impact of changes in the cooling rate on a size, a number and a morphology of preeutectic silicon and eutectic α+β (Al+Si).

Go to article

Authors and Affiliations

R. Władysiak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

With the increase in wall thickness of the casting of iron-nickel-aluminium-bronze, by the reduction of the cooling rate the size of κII phase

precipitates increases. This process, in the case of complex aluminium bronzes with additions of Cr, Mo and W is increased. Crystallization

of big κII phase, during slow cooling of the casting, reduces the concentration of additives introduced to the bronze matrix and hardness.

Undertaken research to develop technology of thick-walled products (g> 6 mm) of complex aluminium bronzes. Particular attention

was paid to the metallurgy of granules. As a result, a large cooling speed of the alloy, and also high-speed solidification casting a light

weight of the granules allows: to avoid micro-and macrosegregation, decreasing the particle size, increase the dispersion of phases in

multiphase alloys. Depending on the size granules as possible is to provide finished products with a wall thickness greater than 6 mm by

infiltration of liquid alloy of granules (composites). Preliminary studies was conducted using drip method granulate of CuAl10Fe5Ni5

bronze melted in a INDUTHERM-VC 500 D Vacuum Pressure Casting Machine. This bronze is a starting alloy for the preparation of the

complex aluminium bronzes with additions of Cr, Mo, W and C or Si. Optimizations of granulation process was carried out. As the process

control parameters taken a casting temperature t (°C) and the path h (mm) of free-fall of the metal droplets in the surrounding atmosphere

before it is intensively cooled in a container of water. The granulate was subjected to a sieve analysis. For the objective function was

assume maximize of the product of Um*n, the percentage weight "Um" and the quantity of granules 'n' in the mesh fraction. The maximum

value of the ratio obtained for mesh fraction a sieve with a mesh aperture of 6.3 mm. In the intensively cooled granule of bronze was

identified microstructure composed of phases: β and fine bainite (α+β'+β'1) and a small quantity of small precipitates κII phase. Get high

microhardness bronze at the level of 323±27,9 HV0,1.

Go to article

Authors and Affiliations

B.P. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

Development of salt cores prepared by high-pressure squeezing and shooting with inorganic binders has shown a high potential of the

given technology even for high-pressure casting of castings. Strength, surface quality of achieved castings, and solubility in water become

a decisive criterion. The shape and quality of grain surface particularly of NaCl – cooking salts that can be well applied without anticaking

additives has shown to be an important criterion. Thus the salt cores technology can cover increasingly growing demands for casting

complexity especially for the automobile industry.

Go to article

Authors and Affiliations

P. Jelínek
E. Adámková
Download PDF Download RIS Download Bibtex

Abstract

In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group

of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment

and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method

of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the

technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length.

Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction,

consolidation and hot extrusion.

In this article the authors focussed their attention on the technological aspect of the above mentioned process and described successive

stages of the fabrication of an AlZn9Mg2.5Cu1.8 alloy of ultrafine grain structure designated for further plastic working, which enables

making extruded rods or elements shaped by the die forging technology. Studies described in the article were performed under variable

parameters determined experimentally in the course of the alloy manufacturing process, including casting by RS and subsequent

fragmentation.

Go to article

Authors and Affiliations

M. Szymaneka
B. Augustyn
D. Kapinos
S. Boczkal
J. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Contemporary materials engineering requires the use of materials characterised by high mechanical properties, as these precisely

properties determine the choice of material for parts of machinery and equipment. Owing to these properties it is possible to reduce

the weight and, consequently, the consumption of both material and energy. Trying to meet these expectations, the designers are

increasingly looking for solutions in the application of magnesium alloys as materials offering a very beneficial strength-to-weight ratio.

However, besides alloying elements, the properties are to a great extent shaped by the solidification conditions and related structure.

The process of structure formation depends on the choice of casting method forced by the specific properties of casting or by the specific

intended use of final product. The article presents a comparison of AZ91 magnesium alloys processed by different casting technologies.

A short characteristic was offered for materials processed by the traditional semi-continuous casting process, which uses the solidification

rates comprised in a range of 5 - 20⁰C/s, and for materials made in the process of Rapid Solidification, where the solidification rate can

reach 106 ⁰C/s. As a result of the casting process, a feedstock in the form of billets and thin strips was obtained and was subjected next

to the process of plastic forming. The article presents the results of structural analysis of the final product. The mechanical properties

of the ø7 mm extruded rods were also evaluated and compared.

Go to article

Authors and Affiliations

P. Korczak
M. Szymanek
B. Augustyn
D. Kapinos
S. Boczkal
Download PDF Download RIS Download Bibtex

Abstract

The article shows the influence of environment requirements on changes in different foundry moulding sands technologies such as cold

box, self-hardening moulding sands and green sands. The aim of the article is to show the possibility of using the biodegradable materials

as binders (or parts of binders’ compositions) for foundry moulding and core sands. The authors concentrated on the possibility of

preparing new binders consisting of typical synthetic resins - commonly used in foundry practice - and biodegradable materials. According

to own research it is presumed that using biodegradable materials as a part of new binders’ compositions may cause not only lower toxicity

and better ability to reclaim, but may also accelerate the biodegradation rate of used binders. What’s more, using some kinds of

biodegradable materials may improve flexibility of moulding sands with polymeric binder. The conducted research was introductory and

took into account bending strength and thermal properties of furan moulding sands with biodegradable material (PCL). The research

proved that new biodegradable additive did not decrease the tested properties.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

The constantly developing and the broadly understood automation of production processes in foundry industry, creates both new working conditions - better working standards, faster and more accurate production - and new demands for previously used materials as well as opportunities to generate new foundry defects. Those high requirements create the need to develop further the existing elements of the casting production process. This work focuses on mechanical and thermal deformation of moulding sands prepared in hot-box technology. Moulding sands hardened in different time periods were tested immediately after hardening and after cooling. The obtained results showed that hardening time period in the range 30-120 sec does not influence the mechanical deformation of tested moulding sands significantly. Hot distortion tests proved that moulding sands prepared in hot-box technology can be characterized with stable thermal deformation up to the temperature of circa 320oC.

Go to article

Authors and Affiliations

A. Grabarczyk
K. Major-Gabryś
S.M. Dobosz
J. Jakubski

This page uses 'cookies'. Learn more