Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 86
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present paper is concerned with the practical interconnection between virtual engineering tools and additive model manufacturing technologies and the subsequent production of a ceramic shell by rapid prototyping with the use of Cyclone technology to produce the aluminium casting prototype. Prototypes were developed as part of the student formula project, where several parts originally produced by machining were replaced by castings. The techniques of topological optimization and the combination with the tools of the numerical simulation were used to optimise the virtual prototype before a real production of the first prototype. 3D printing of wax pattern ensured direct and fast assembly of the cluster without any additional operations and troubles during dewaxing. The shell was manufactured in 6 hours thanks to a system of quick-drying of individual layers of ceramic shell. It has been verified that the right combination of individual virtual tools with the rapid prototyping can shorten the development time and delivery of the first prototypes from a few months to a few weeks.
Go to article

Bibliography

[1] Xiao, A., Bryden, K.M. (2004). Virtual engineering: A vision of the next-generation product realization using virtual reality technologies. Proceedings of the ASME 2004 Design Engineering Technical Conferences – DETC’04, 28 September – 2 October, pp 1-9.Salt Lake City, Utah, #57698.
[2] Pekkola, S. & Jäkälä, M. (2007) From technology engineering to social engineering: 15 years of research on virtual worlds. The DATA BASE for Advances in Information Systems. 38(4), 11-16.
[3] Bao, Jin, J.S., Gu, Y., Yan, M.Q. & Ma, J.Q. (2002). Immersive virtual product development. Journal of Materials Processing Technology. 129(1-3), 592-596. DOI: 10.1016/S0924-0136(02)00655-6.
[4] Van der Auweraer, H. (2010). Virtual engineering at work: The challenges for designing intelligent products. In: Proceedings of the TMCE 2010 Symposium, April 12-16, (pp. 3-18), Ancona, Italy.
[5] Stawowy, A., Wrona, R., Brzeziński, M. & Ziółkowski, E. (2013). Virtual factory as a method of foundry design and production management. Archives of Foundry Engineering. 13(1), 113-118. DOI: 10.2478/afe-2013-0022
[6] Dépincé, P., Chablat, D., Woelk, P.O. (2004) Virtual manufacturing: tools for improving design and production, Dans International Design Seminar - CIRP International Design Seminar, Egypt.
[7] Kumar, P., Ahuja, I.P.S. & Singh, R. (2013). Framework for developing a hybrid investment casting process. Asian Review of Mechanical Engineering, 2(2), 49-55.
[8] Kügelgen, M. (2008). From 7 days to 7 hours – Investment casting parts within the shortest time, 68th WFC - World Foundry Congress, 7th - 10th February, 2008, (pp. 147-151).

Go to article

Authors and Affiliations

V. Krutiš
1
ORCID: ORCID
P. Šprta
1
V. Kaňa
1
ORCID: ORCID
A. Zadera
1
J. Cileček
2

  1. Brno University of Technology, Czech Republic
  2. Alucast s.r.o., Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research concerning the evaluation of tribological properties of graphite materials used, among others, for crystallisers for continuous casting of non-ferrous metals and their alloys. Graphite materials differing not only in their physical properties but also in the technology of their production were selected from a wide range of commercially available products. Wear resistance investigations of the tested graphite materials were carried out on a pin-on-disc tribometer under technically dry friction conditions on a sliding distance of 1000 m. A constant load but variable speed was used in the tests. The mean value of the coefficient of friction and the wear of the material were determined based on the tribological tests carried out. It was observed that as the speed increases, the average value of the coefficient of friction decreases, while the wear increases. A microstructural analysis of the wear track showed that the friction mechanism depends mainly on the graphite formation technology, which is related to the microstructure of the tested materials, and to a lesser extent to their physical and mechanical properties. Varying the speed values made it possible to trace changes in the wear mechanism, on the basis of which it is possible to predict the durability and reliability of graphite crystalliser operation.
Go to article

Bibliography

[1] Kwaśniewski, P., Strzępek, P., Kiesiewicz, G., Kordaszewski, Sz., Franczak, K., Sadzikowski, M., Ściężor, W., Brudny, A., Kulasa, J., Juszczyk, B., Wycisk, R. & Śliwka, M. (2021). External surface quality of the graphite crystallizer as a factor influencing the temperature of the continuous casting process of ETP grade copper. Materials. 14(21), 6309, 1-14. DOI: 10.3390/ma14216309.
[2] Brudny, A., Kulasa, J., Cwolek, B., Malec, W. & Juszczyk, B. (2022). Influence of the continuous casting process of tin-zinc-lead bronze on the wear of the graphitecrystallizer. Metalurgija. 61(3-4), 785-788. ISSN 0543-5846.
[3] Lee, S.-M., Kang, D.-S. & Roh, J.-S. (2015). Bulk graphite: materials and manufacturing process. Carbon Letters. 16(3), 135-146. DOI: 10.5714/CL.2015.16.3.135.
[4] Özmen, Y. (2015). Tribological behavior of carbon-based materials. In ASME 2015 International Mechanical Engineering Congress and Exposition, 12-19 November (pp. 13-19). Houston, Texas, USA. DOI: 10.1115/IMECE2015-50233.
[5] Erdemir, A. & Donnet, C. (2006). Tribology of diamond-like carbon films: recent progress and future prospects. Journal of Physics D Applied Physics. 39(18), 311-327. DOI: 10.1088/0022-3727/39/18/R01.
[6] Alisin, V. & Roshchin, M.N. (2019). Tribology of carbon-containing materials at high temperatures. Journal of Physics Conference Series. 1399(4), 044034, 1-6. DOI: 10.1088/1742-6596/1399/4/044034.
[7] Zhai, W., Srikanth, N., Kong, L.B. & Zhou, K. (2017). Carbon nanomaterials in tribology. Carbon. 119, 150-171. DOI: 10.1016/j.carbon.2017.04.027.
[8] Grill, A. (1993). Review of the tribology of diamond-like carbon. Wear. 168(1-2), 143-153. DOI: 10.1016/0043-1648(93)90210-D.
[9] Szeluga, U., Pusz, S., Kumanek, B., Myalski, J. Hekner, B., Tsyntsarski, B., Oliwa, R. & Trzebicka, B. (2018). Carbon foam based on epoxy/novolac precursor as porous micro-filler of epoxy composites. 105, 28-39. DOI: 10.1016/j.compositesa.2017.11.004.
[10] Szeluga, U., Olszowska, K., Pusz, S., Myalski, J., Godzierz, M., Kobyliukh, A. & Tsyntsarski, B. (2021) Effect of grain fractions of crushed carbon foam on morphology and thermomechanical and tribological properties of random epoxy-carbon composites. Wear. 466-467, 1-14. DOI: 10.1016/j.wear.2020.203558.
[11] SGL Carbon. (2022). SGL Carbon. Retrieved March 2022 from https://www.sglcarbon.com/
[12] Robertson, J.F.R. (2002). Diamond-like amorphous carbon. Materials Science and Engineering Reports. 37(4-6), 129-281. DOI: 10.1016/S0927-796X(02)00005-0.
[13] Pérez-Mayoral, E., Matos, I., Bernardo, M. & Fonesca, I.M. (2019). New and advanced porous carbon materials in fine chemical synthesis. Emerging precursors of porous carbons. Catalysts. 9 (2), 133, 1-35. DOI: 10.3390/catal9020133.
Go to article

Authors and Affiliations

A. Brudny
1
ORCID: ORCID
J. Kulasa
1
ORCID: ORCID
B. Juszczyk
1
ORCID: ORCID
J. Myalski
2
ORCID: ORCID
S. Roskosz
2
ORCID: ORCID
R. Wycisk
3
P. Kwaśniewski
4
ORCID: ORCID
P. Strzępek
4
ORCID: ORCID
M. Poręba
5
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Poland
  2. Silesian University of Technology, Faculty of Materials Engineering, Poland
  3. Carbo-Graf Sp. z o.o., Poland
  4. AGH University of Science and Technology, Department of Non-Ferrous Metals, Poland
  5. Rzeszów University of Technology, The Faculty of Mechanical Engineering and Aeronautics, Poland
Download PDF Download RIS Download Bibtex

Abstract

The process of investment casting of AZ91 magnesium alloy open-cell porosity foams was analysed. A basic investment casting technique was modified to enable the manufacturing of magnesium foams of chosen porosities in a safe and effective way. Various casting parameters (mould temperature, metal pouring temperature, pressure during metal pouring and solidifying) were calculated and analysed to assure complete mould filling and to minimize surface reactions with mould material. The foams manufactured with this method have been tested for their mechanical strength and collapsing behaviour. The AZ91 foams acquired in this research turned out to have very high open porosity level (>80%) and performed with Young’s modulus of ~30 MPa on average. Their collapsing mechanism has turned out to be mostly brittle. Magnesium alloy foams of such morphology may find their application in fields requiring lightweight materials of high strength to density ratio or of high energy absorption properties, as well as in biomedical implants due to magnesium’s high biocompatibility and its mechanical properties similar to bone tissue.
Go to article

Bibliography

[1] Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal- ceramic composite foams. Archives of Foundry Engineering. 17(4), 47-50. DOI: 10.1515/afe-2017-0129.
[2] Bisht, A., Patel, V. K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In: Katiyar, J., Bhattacharya, S., Patel, V., Kumar, V. (eds), Automotive Tribology. Energy, Environment, and Sustainability (pp. 51-63). Singapore: Springer. DOI: 10.1007/978-981-15-0434-1_4.
[3] Popielarski, P., Sika, R., Czarnecka-Komorowska, D., Szymański, P., Rogalewicz, M. & Gawdzińska, K. (2021). Evaluation of the cause and consequences of defects in cast metal-ceramic composite foams. Archives of Foundry Engineering. 21(1), 81-88. DOI: 10.24425/afe.2021.136082.
[4] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[5] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095, 1-14. DOI: 10.1016/J.CSITE.2021.101095.
[6] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by cellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/afe-2016-0090.
[7] Lehmann, H., Werzner, E., Malik, A., Abendroth, M., Ray, S. & Jung, B. (2022). Computer-aided design of metal melt filters: geometric modifications of open-cell foams, effective hydraulic properties and filtration performance. Advanced Engineering Materials. 24(2), 1-11. DOI: 10.1002/adem.202100878.
[8] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J. & Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[9] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27(2), 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[10] Anglani, A. & Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. Procedia CIRP. 99, 307-312. DOI: 10.1016/j.procir.2021.03.046.
[11] Anglani, A. & Pacella, M. (2018). Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP. 67, 504-509. DOI: 10.1016/J.PROCIR.2017.12.252.
[12] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K., & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[13] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Proceedings of the SPIE, 9802 (id.98021R), 8. DOI: 10.1117/12.2219470.
[14] Marx, J., & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials, 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[15] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.
[16] Kang, L., Shi, Y. & Luo, X. (2021). Effects of sodium chloride on structure and compressive properties of foamed AZ91 Effects of sodium chloride on structure and compressive properties of foamed AZ91. AIP Advances.11, 015118, 1-4. DOI: 10.1063/5.0033314.
[17] Pelczar, D., Długosz, P., Darłak, P., Nykiel, M., & Hebda, M. (2022). The effect of BN or SiC addition on PEO properties of coatings formed on AZ91 magnesium alloy. Archives of Metallurgy and Materials. 67(1), 147-154. DOI: https://doi.org/10.24425/amm.2022.137483.
[18] Gupta, M., Mui Ling Sharon, N. (2010). Magnesium, Magnesium Alloys, and Magnesium Composites. Hoboken: John Wiley & Sons, Ltd. DOI: 10.1002/9780470905098.
[19] Dong-hui, Y., Shang-run, Y., Hui, W., Ai-bin, M., Jing-hua, J., Jian-qing, C. & Ding-lie, W. (2010). Compressive properties of cellular Mg foams fabricated by melt-foaming method. Materials Science & Engineering A. 527(21-22), 5405-5409. DOI: 10.1016/j.msea.2010.05.017.
[20] Kroupová, I., Radkovský, F., Lichý, P. & Bednářová, V. (2015). Manufacturing of cast metal foams with irregular cell structure. Archives of Foundry Engineering. 15(2), 55-58. DOI: 10.1515/afe-2015-0038.
[21] Shih, T., Wang, J. & Chong, K. (2004). Combustion of magnesium alloys in air. Materials Chemistry and Physics. 85(2-3), 302-309. DOI: 10.1016/j.matchemphys.2004.01.036.
[22] Fujisawa, S., Yonezu, A. (2014). Mechanical property of microstructure in die-cast magnesium alloy evaluated by indentation testing at elevated temperature. Recent Advances in Structural Integrity Analysis: Proceedings of the International Congress (APCF/SIF-2014). Woodhead Publishing Limited. 422-426. DOI: 10.1533/9780081002254.422.
[23] Vyas, A.V. & Sutaria, M.P. (2020). Investigation on influence of the cast part thickness on interfacial mold–metal reactions during the investment casting of AZ91 magnesium alloy. International Journal of Metalcasting. 20(4), 139-144. DOI: 10.1007/s40962-020-00530-2.
[24] Ravi, K.R., Pillai, R.M., Amaranathan, K.R., Pai, B.C. & Chakraborty, M. (2008). Fluidity of aluminum alloys and composites: A review. Journal of Alloys and Compounds. 456(1-2), 201-210. DOI: 10.1016/j.jallcom.2007.02.038.
[25] Voigt, R.C., Bertoletti, J., Kaley, A., Ricotta, S., Sunday, T. (2002). Fillability of thin-wall steel castings. Technical Report. https://doi.org/10.2172/801749.
[26] Dewhirst, B.A. (2008). Castability control in metal casting via fluidity measures: Application of error analysis to Variations in Fluidity Testing. Worcester Polytechnic Institute.
[27] Le, Q., Zhang, Z., Cui, J. & Chang, S. (2009). Study on the filtering purification of AZ91 magnesium alloy. Materials Science Forum. 610-613, 754-757. DOI: 10.4028/www.scientific.net/MSF.610-613.754.
[28] Wong, P., Song, S., Tsai, P., Maqnun, M.J., Wang, W., Wu, J. & Jang, S.J. (2022). Using Cu as a spacer to fabricate and control the porosity of titanium zirconium based bulk metallic glass foams for orthopedic implant applications. Materials. 15(5), 1887, 1-14. https://doi.org/10.3390/ma15051887.

Go to article

Authors and Affiliations

H. Kapłon
1
ORCID: ORCID
A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents investigation results of the effect of sand fluidization on the structure and mechanical properties of AlSi9 aluminum alloy. Castings were made by lost foam casting process with sand fluidization in mold at the stages of their solidification and cooling. Sand fluidization was achieved by blowing sand bed with compressed air in a foundry container. The metallographic study was carrying out on samples cut from different sections of the castings. Mechanical properties were determined on specimens made from cast samples. Microstructural analysis showed that sand fluidization increases the cooling rate, as a result, the main microstructural components of the alloy – SDAS, eutectic silicon and needles of the rich-iron phase – decrease. Moreover, in different sections of the casting structure is more uniform. With an increasing the air flow rate, a greater refinement of the structure is observed. Through the use of sand fluidization, the mechanical properties of LFC aluminum alloys increase to the level of gravity die castings.

Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
Download PDF Download RIS Download Bibtex

Abstract

In this work, the influence of microwave drying parameters such as irradiation time and microwave power level on the properties of synthetic moulding sands is presented. Determination of compressive strength Rc s, shear strength Rt s and permeability Ps of synthetic moulding sands with the addition of two different bentonites, after drying process with variable microwave parameters were made. The research works were carried out using the microwave oven with regulated power range of the electromagnetic field. From the results obtained, the significant influence of both drying time and microwave power level on the selected properties of moulding sands was observed. In comparison to the conventional drying method, microwave drying allows to obtain higher compressive strength of the synthetic moulding sand. The influence of application microwave irradiation on permeability was not observed. Higher strength characteristics and shorter drying time are major advantages of application of the electromagnetic irradiation for drying of the synthetic moulding sand with regard to conventional drying method.

Go to article

Authors and Affiliations

D. Nowak
B. Gal
A. Włodarska
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in thesandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.
Go to article

Authors and Affiliations

D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

Within the research, selected multilayer technological systems created as combinations of water-glass containing moulding sand with

foundry tooling, were characterised on the grounds of their electrical properties. By measuring resonance frequency and quality factor of a

waveguide resonance cavity, real component of permittivity εr′ and loss tangent tgδ were determined for multilayer foundry systems with

various qualitative and quantitative compositions. It was demonstrated that combination of a sandmix and foundry tooling with known

dielectric properties results in a system with different physico-chemical properties, whose relation to the parameters of individual

components of the system is undefined at this research stage. On the grounds of measurement results, theoretical value of microwave

heating power, dissipated in unit volume of the selected multilayer foundry system, was determined. Knowledge of theoretical heating

power and evaluation of physical, chemical and structural changes occurring in moulding sands exposed to microwaves in such a

technological system makes a ground for empirical modelling of the process of microwave heating of foundry moulds and cores.

Go to article

Authors and Affiliations

B. Gal
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the crystallization process of silumin by the TDA thermographic method and the results of the cast

microstructure obtained in the sampler TDA-10, that was cooling down in ambient air. The study was conducted for silumin AlSi11

unmodified. The work demonstrated that the use of thermal imaging camera allows for the measurement and recording the solidification

process of silumin. Thermal curve was registered with the infrared camera and derivative curve that was calculated on the base of thermal

curve have both a very similar shape to adequate them TDA curves obtained from measurements using a thermocouple. Test results by

TDA thermographic method enable quantitative analysis of the kinetics of the cooling and solidification process of neareutectic silumin.

Go to article

Authors and Affiliations

R. Władysiak
A. Kozuń
Download PDF Download RIS Download Bibtex

Abstract

The last decade has seen growing interest in professional public about applications of porous metallic materials. Porous metals represent a new type of materials with low densities, large specific surface, and novel physical and mechanical properties, characterized by low density and large specific surface. They are very suitable for specific applications due to good combination of physical and mechanical properties such as high specific strength and high energy absorption capability. Since the discovery of metal foams have been developed many methods and techniques of production in liquid, solid and gas phases. Condition for the use of metal foams - advanced materials with unique usability features, are inexpensive ways to manage their production. Mastering of production of metallic foams with defined structure and properties using gravity casting into sand or metallic foundry moulds will contribute to an expansion of the assortment produced in foundries by completely new type of material, which has unique service properties thanks to its structure, and which fulfils the current demanding ecological requirements. The aim of research conducted at the department of metallurgy and foundry of VSB-Technical University Ostrava is to verify the possibilities of production of metallic foams by conventional foundry processes, to study the process conditions and physical and mechanical properties of metal foam produced. Two procedures are used to create porous metal structures: Infiltration of liquid metal into the mold cavity filled with precursors or preforms and two stage investment casting.

Go to article

Authors and Affiliations

P. Lichy
V. Bednarova
T. Elbel
Download PDF Download RIS Download Bibtex

Abstract

This article presents the preparation of composite casts made using the technology of precise casting by the method of melted models. The composite was reinforced with the ceramic sinter from Al2O3 particle shaped in a printed polystyrene female mould, which was fired together with precured ceramics. The resulting ceramic preform, after being saturated with paraffin and after the filling system is installed, was filled with liquid moulding sand and fired together with the mould. The reinforcement was saturated by means of the counter-pressure exerting action on the metal column, being a resultant of pressures inside and outside the chamber. The preliminary assessment showed no apparent defects in the shape of the cast. The casting was measured and the figures were compared with the dimensions of the matrix in which the reinforcing preform was made, the preform after firing and after saturation with paraffin. The results were presented in a table and dimensional deviations were determined. The composite casting was subjected to metallographic tests, which excluded any porous defects or damage to the reinforcement. It can therefore be said that, according to the predictions resulting from the previous calculations, the pressure values used allowed for complete filling of the reinforcement capillaries. The proposed method is therefore suitable for the preparation of precision composite castings with complex shapes.

Go to article

Authors and Affiliations

P. Szymański
K. Gawdzińska
D. Nagolska
Download PDF Download RIS Download Bibtex

Abstract

The constant growth of foundry modernization, mechanization and automation is followed with growing requirements for the quality and parameters of both moulding and core sands. Due to this changes it is necessary to widen the requirements for the parameters used for their quality evaluation by widening the testing of the moulding and core sands with the measurement of their resistance to mechanical deformation (further called elasticity). Following article covers measurements of this parameter in chosen moulding and core sands with different types of binders. It focuses on the differences in elasticity, bending strength and type of bond destruction (adhesive/cohesive) between different mixtures, and its connection to the applied bonding agent. Moulding and cores sands on which the most focus is placed on are primarily the self-hardening moulding sands with organic and inorganic binders, belonging to the group of universal applications (used as both moulding and core sands) and mixtures used in cold-box technology.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
J. Kusiński
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new

parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and

deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be

characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry

processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws,

caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high

resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this

property, presents methods of measuring and continues earlier research.

Go to article

Authors and Affiliations

St.M. Dobosz
A. Grabarczyk
K. Major-Gabryś
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a preliminary research on determining a possibility to use microwave radiation for drying casting protective

coatings applied on patterns used in the lost foam technology. Taken were measurements of permittivity εr and loss factor tgδ at 2.45 GHz,

as well as attempts were made of microwave drying of a protective coating based on aluminium silicates, applied on shapes of foamed

polystyrene and rigid polymeric foam. Time and results of microwave drying were compared with the results obtained by drying at 50 °C

by the traditional method commonly used for removing water from protective coatings. Analysis of the obtained drying kinetics curves

demonstrated that selection of proper operation parameters of microwave equipment permits the drying time to be significantly shortened.

Depending on kind of the pattern material, drying process of a protective coating runs in a different way, resulting in obtaining different

quality of the dried coating.

Go to article

Authors and Affiliations

B. Opyd
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

A method for the open-cell aluminum foams manufacturing by investment casting was presented. Among mechanical properties, compressive behaviour was investigated. The thermal performance of the fabricated foams used as heat transfer enhancers in the heat accumulator based on phase change material (paraffin) was studied during charging-discharging working cycles in terms of temperature distribution. The influence of the foam on the thermal conductivity of the system was examined, revealing a two-fold increase in comparison to the pure PCM. The proposed castings were subjected to cyclic stresses during PCM’s subsequent contraction and expansion, while any casting defects present in the structure may deteriorate their durability. The manufactured heat transfers enhancers were found suitable for up to several dozen of cycles. The applied solution helped to facilitate the heat transfer resulting in more homogeneous temperature distribution and reduction of the charging period’s duration.
Go to article

Bibliography

[1] Bisht, A., Patel, V.K. & Gangil, B. (2019). Future of metal foam materials in automotive industry. In Jitendra K. K., Shantanu B., Vinay K. P. & Vikram K. (Eds.), Automotive Tribology, (pp. 51-63). Springer, Singapore, DOI: 10.1007/978-981-15-0434-1_4.
[2] Almonti, D., Baiocco, G., Mingione, E. & Ucciardello, N. (2020). Evaluation of the effects of the metal foams geometrical features on thermal and fluid-dynamical behavior in forced convection. The International Journal of Advanced Manufacturing Technology. 111(3), 1157-1172. DOI: 10.1007/S00170-020-06092-1.
[3] Sivasankaran, S. & Mallawi, F.O.M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering. 26, 101095. DOI: 10.1016/J.CSITE.2021.101095.
[4] Anglani, A., Pacella, M. (2021). Binary Gaussian Process classification of quality in the production of aluminum alloys foams with regular open cells. In 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 15-17 July 2020 (pp. 307–312). Gulf of Naples, Italy: The International Academy for Production Engineering.
[5] Anglani, A., Pacella, M. (2018). Logistic Regression and Response Surface Design for Statistical Modeling of Investment Casting Process in Metal Foam Production. In 11th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 19-21 July 2017 (pp. 504–509). Gulf of Naples, Italy: The International Academy for Production Engineering.
[6] Kryca, J., Iwaniszyn, M., Piątek, M., Jodłowski, P.J., Jędrzejczyk, R., Pędrys, R., Wróbel, A., Łojewska, J., Kołodziej, A. (2016). Structured foam reactor with CuSSZ-13 catalyst for SCR of NOx with ammonia. Topics in Catalysis. 59(10), 887-894. DOI: 10.1007/S11244-016-0564-4.
[7] Alamdari, A. (2015). Performance assessment of packed bed reactor and catalytic membrane reactor for steam reforming of methane through metal foam catalyst support. Journal of Natural Gas Science and Engineering. 27, 934-944. DOI: 10.1016/J.JNGSE.2015.09.037.
[8] Vilniškis, T., Januševičius, T. & Baltrėnas, P. (2020). Case study: Evaluation of noise reduction in frequencies and sound reduction index of construction with variable noise isolation. Noise Control Engineering Journal. 68(3), 199-208. DOI: 10.3397/1/376817.
[9] Hua, L., Sun, H. & Gu Jiangsu, J. (2016). Foam metal metamaterial panel for mechanical waves isolation. Conference: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. DOI: 10.1117/12.2219470.
[10] Wang, Y., Jiang, S., Wu, Z., Shao, H., Wang, K. & Wang, L. (2018). Study on the inhibition influence on gas explosions by metal foam based on its density and coal dust. Journal of Loss Prevention in the Process Industries. 56, 451-457. DOI: 10.1016/J.JLP.2018.09.009.
[11] Marx, J. & Rabiei, A. (2017). Overview of composite metal foams and their properties and performance. Advanced Engineering Materials. 19(11), 1600776. DOI: 10.1002/ADEM.201600776.
[12] Tong, X., Shi, Z., Xu, L., Lin, J., Zhang, D., Wang, K., Li, Y., Wen, C. (2020). Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia. 102, 481-492. DOI: 10.1016/J.ACTBIO.2019.11.031
[13] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46, 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[14] Schüler, P., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2013). Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading. Materials Science and Engineering: A, 587, 250-261. DOI: 10.1016/J.MSEA.2013.08.030.
[15] Schüler, P., Frank, R., Uebel, D., Fischer, S.F., Bührig-Polaczek, A. & Fleck, C. (2016). Influence of heat treatments on the microstructure and mechanical behaviour of open cell AlSi7Mg0.3 foams on different lengthscales. Acta Materialia. 109, 32-45. DOI: 10.1016/J.ACTAMAT.2016.02.041.
[16] Luksch, J., Bleistein, T., Koenig, K., Adrien, J., Maire, E. & Jung, A. (2021). Microstructural damage behaviour of Al foams. Acta Materialia. 208, 116739. DOI: 10.1016/J.ACTAMAT.2021.116739.
[17] Sathaiah, S., Dubey, R., Pandey, A., Gorhe, N.R., Joshi, T. C., Chilla, V., Muchhala, D., Mondal, D.P. (2021). Effect of spherical and cubical space holders on the microstructural characteristics and its consequences on mechanical and thermal properties of open-cell aluminum foam. Materials Chemistry and Physics. 273, 125115. DOI: 10.1016/j.matchemphys.2021.125115
[18] Qu, Z. (2018). Heat transfer enhancement technique of pcms and its lattice Boltzmann modeling. In Mohsen Sheikholeslami Kandelousi (Eds.), Thermal Energy Battery with Nano-enhanced PCM. IntechOpen Limited, London, UK. DOI: 10.5772/INTECHOPEN.80574
[19] Tian, Y. & Zhao, C.Y. (2011). A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 36, 5539-5546. DOI: 10.1016/j.energy.2011.07.019.
[20] Novak, N., Vesenjak, M., Duarte, I., Tanaka, S., Hokamoto, K., Krstulović-Opara, L., Guo, B., Chen, P., Ren, Z. (2019). Compressive behaviour of closed-cell aluminium foam at different strain rates. Materials. 12(24), 4108. DOI: 10.3390/MA12244108.
[21] Naplocha, K., Dmitruk, A., Mayer, P. & Kaczmar, J.W. (2019). Design of honeycomb structures produced by investment casting. Archives of Foundry Engineering. 19(4), 76-80. DOI: 10.24425/AFE.2019.129633.
[22] Zhou, J. & Soboyejo, W.O. (2004). Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment. Materials Science and Engineering A. 369(1-2), 23-35. DOI: 10.1016/J.MSEA.2003.08.009.
[23] Jang, W.Y. & Kyriakides, S. (2009). On the crushing of aluminum open-cell foams: Part I. Experiments. International Journal of Solids and Structures. 46(3-4), 617-634. DOI: 10.1016/J.IJSOLSTR.2008.09.008.
[24] Krstulović-Opara, L., Vesenjak, M., Duarte, I., Ren, Z. & Domazet, Z. (2016). Infrared thermography as a method for energy absorption evaluation of metal foams. Materials Today: Proceedings. 3(4), 1025-1030. DOI: 10.1016/J.MATPR.2016.03.041.
[25] Naplocha, K., Koniuszewska, A., Lichota, J. & Kaczmar, J. W. (2016). Enhancement of heat transfer in PCM by vellular Zn-Al structure. Archives of Foundry Engineering. 16(4), 91-94. DOI: 10.1515/AFE-2016-0090

Go to article

Authors and Affiliations

A. Dmitruk
1
ORCID: ORCID
H. Kapłon
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID

  1. Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The studied silicon bronze (CuSi3Zn3Mn1) is characterised by good strength and corrosion resistance due to the alloying elements that are present in it (Si, Zn, Mn, Fe). This study analysed the casting process in green sand moulding, gravity die casting, and centrifugal casting with a horizontal axis of rotation. The influences of Ni and Zr alloying additives as well as the casting technology that was used were evaluated on the alloy’s microstructure and mechanical properties. The results of the conducted research are presented in the form of the influence of the technology (GS, GZ, GM) and the content of the introduced alloy additives on the mechanical parameters (UTS, A10, and Proof Stress, BHN).
The analysis of the tests that were carried out made it possible to determine which of the studied casting technologies had the best mechanical properties. Microstructure of metal poured into metal mould was finer than that which was cast into moulding compound. Mechanical properties of castings made in moulding compound were lower than those that were cast into metal moulds. Increased nickel content affected the BHN parameter.
Go to article

Bibliography

[1] Nnakwo, K. C., Mbah, C. N. & Nnuka, E. E. (2019). Influence of trace additions of titanium on grain characteristics, conductivity and mechanical properties of copper-silicon-titanium alloys. Heliyon. 5(10), e02471, 1-7. DOI: 10.1016/j.heliyon.2019.e02471.
[2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining processes in the copper casting technology. Metalurgija. 54(1), 259-262.
[3] Wesołowski, K. (1966). Metaloznawstwo. tom III. Warszawa: Państwowe Wydawnictwo Techniczne.
[4] Prowans, S. (1988). Metaloznawstwo. Warszawa: Państwowe Wydawnictwo Naukowe.
[5] Goto, I.; Aso, S., Ohguchi, Ki., Kurosawa, K., Suzuki, H., Hayashi, H. & Shionoya, J. (2019). Deformation behavior of pure copper castings with as-cast surfaces for electrical parts. Journal of Materials Engineering and Performance. 28, 3835-3843. DOI: 10.1007/s11665-019-3865-5.
[6] Bydałek, A.W. & Najman, K. (2006). The reduction melting conduction of Cu-Si slloys. Archives of Foundry. 6(22), 107-110. (in Polish).
[7] Davis, J.R. (Ed.) (2001). Copper and copper alloys. ASM International.
[8] Rowley, M. T. (1984). Casting copper-base alloys. Illinois: American Foundrymen´s Society.
[9] Rzadkosz, S. (2013). Foundry of copper and copper alloys. Kraków: Akapit. (in Polish).
[10] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, P., Papaj, M. & Perek-Nowak, M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 3(18), 11-18. DOI: 10.24425/123594.
[11] Romankiewicz, R., Romankiewicz, F. (2016). Research into oxide inclusions in silicon bronze CuSi3Zn3MnFe with the use of X-ray microanalysis. Metallurgy and Foundry Engineering. 42(1), 41-46. DOI: 10.7494/mafe.2016.42.1.41
[12] Tokarski, M. (1985). Metaloznawstwo metali i stopów nieżelaznych w zarysie. Katowice: Wydawnictwo Śląsk.
[13] Kosowski, A. (1996) Metaloznawstwo stopów odlewniczych. Kraków: Wydawnictwo AGH.
[14] Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B.C., Oghenekowho, P. A., Okeke, I.U. & Maduka, E. A. (2021) Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences. 3(11), 829, 1-10. DOI: 10.1007/s42452-021-04784-1. [15] Adamski, Cz. (1953). Casting bronzes and silicon brasses - technology and application. Warszawa: Państwowe Wydawnictwo Techniczne. (in Polish).
[16] Guharaja, S., Noorul Haq, A. & Karuppannan, K. M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. The International Journal of Advanced Manufacturing Technology. 30, 1040-1048. DOI: 10.1007/s00170-005-0146-2.
[17] Hirigo, T.H. & Singh, B. (2019). Design and analysis of sand casting process of mill roller. The International Journal of Advanced Manufacturing Technology. 105, 2183-2214. DOI: 10.1007/s00170-019-04270-4.
[18] Sadarang, J., Nayak, R.K. & Panigrahi, I. (2021). Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Transactions of the Indian Institute of Metals. 74, 2939-2952. DOI: 10.1007/s12666-021-02370-y.
[19] Shamasundar, S. & Gopalakrishna V. (2004). Gravity die casting. process die design and process optimisation. esi-group, retrieved July 3, 2023 from https://www.esi-group.com/resources/gravity-die-casting-process-die-design-and-process-optimisation.
[20] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118(1-3), 122-126. DOI: 10.1016/S0924-0136(01)00904-9.
[21] Malhotra, V. & Kumar Y. (2016). Study of process parameters of gravity die casting defects. International Journal of Mechanical Engineering and Technology (IJMET). 7(2), March-April, 208-211.
[22] Balout, B. & Litwin, J. (2012). Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Journal of Materials Engineering and Performance. 21, 450.462. DOI: 10.1007/s11665-011-9873-8.
[23] Wang, X., Chen, R., Wang, Q., Wang, S., Li, Y., Su, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2022). Influence of casting temperature and mold preheating temperature on centrifugal casting by numerical simulation. Journal of Materials Engineering and Performance. 32(15), 6786-3809. https://doi.org/10.1007/s11665-022-07608-4.
[24] Predein, V. V., Zhilin, S. G. & Komarov, O. N. (2022). Promising methods for forming the structure and properties of metal obtained by crystallization under the action of centrifugal forces. Metallurgist. 65(11-12), 1311-1323. https://doi.org/10.1007/s11015-022-01277-3.
[25] Sen, S., Muralidhara B. K., & Mukunda, P. G. (2020). Study of flow behaviour in vertical centrifugal casting. Materials Today: Proceedings. 24(2), 1392-1399. DOI: 10.1016/ j.matpr.2020.04.457.
[26] Keerthi Prasad, K.S., Murali, M.S. & Mukunda, P.G. (2010). Analysis of fluid flow in centrifugal casting. Frontiers of Materials Science in China. 4, 103-110. DOI: 10.1007/s11706-010-0005-4.
[27] Wang, X., Chen, R., Wang, Q., Wang S., Li, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2023). Influence of rotation speed and filling time on centrifugal casting through numerical simulation. International Journal of Metalcasting. 17(2), 1326-1339. DOI: 10.1007/s40962-022-00841-6. [28] Wołczyński, W., Ivanova, A. A. & Kwapisiński, P. (2019). On consonance between a mathematical method for the CET prediction and constrained / unconstrained solidification. Procedia Manufacturing. 30, 459-466. DOI: 10.1016/j.promfg.2019.02.065.
[29] Kwapisiński, P. & Wołczyński, W. (2023). Control of the CET localization in continuously cast copper and copper alloys’ ingots. Archives of Foundry Engineering. 23(2), 91-99. DOI: 10.24425/afe.2023.144303.
[30] Wołczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A. (2016). Structural zones in large static ingot. forecasts for continuously cast brass ingot. Archives of Foundry Engineering. 16(3), 141-146. DOI: 10.1515/afe-2016-0067.

Go to article

Authors and Affiliations

D. Witasiak
1
A. Garbacz-Klempka
1
ORCID: ORCID
M. Papaj
P. Papaj
M. Piękoś
1
ORCID: ORCID
J. Kozana
1
ORCID: ORCID
M. Maj
1
M. Perek-Nowak
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

The microstructure of Al-Si alloy has coarse silicon and this structure is known dangerous for mechanical properties due to its crack effect. Sr addition is preferred to modify the coarse silica during solidification. Additionally, bifilms (oxide structure) are known as a more dangerous defect which is frequently seen in light alloys. It is aimed at that negative effect of bifilms on the properties of the alloys tried to be removed by the degassing process and to regulate the microstructure of the alloy. In this study, the effect of degassing and Sr modification on the mechanical properties of AlSi12Fe alloy was investigated, extensively. Four different parameters (as-received, as-received + degassing, Sr addition, Sr addition + degassing) were studied under the same conditions environmentally. The microstructural analyses and mechanical tests were done on cast parts. All data obtained from the experimental study were analyzed statistically by using statistical analysis software. It was concluded from the results that Sr addition is very dangerous for AlSi12Fe alloy. It can be suggested that to reach high mechanical properties and low casting defects, the degassing process must be applied to all castings whereas Sr addition should not be preferred.

Go to article

Authors and Affiliations

M. Uludağ
M. Gurtaran
D. Dispinar
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

When used for sand casting, foundry sand is stressed in several ways. These stresses, thermal and mechanical, compromise the grain integrity, resulting in size reduction and the production of small particles to the point where the sand is no longer viable for sand casting. This study evaluates the crushability of chromite sand, a crucial characteristic for determining how resistant sand is to size reduction by crushing. To replicate the heat and mechanical strain that sand is subjected to during the industrial sand-casting process, a sinter furnace and rod mill were employed. After nine minutes of heat and mechanical stress application, the crushing ratio, which was used to gauge the crushability of chromite sand, ranged from 1.72 to 1.92 for all samples. There were differences in the rate at which fine particles were produced among the samples, with sample E producing the highest proportion of fine particles in the same length of time. Understanding the properties that control the crushability performance of chromite sand will enable foundries to buy chromite sand with higher recycling yield, reducing the environmental impact of waste foundry sand and eliminating the risk to the workforce's pulmonary health in line with the current industry standards. Foundries will also be able to optimize the current industrial process while continually pushing for innovative foundry technologies and materials.
Go to article

Bibliography


[1] Campbell, J. (2015). Complete Casting Handbook. UK: Second ed.. Butterworth-Heinemann.
[2] Güngen, A.C., Aydemir, Y., Çoban, H., Düzenli, H. & Tasdemir, C. (2016). Lung cancer in Patients Diagnosed with Silicosis Should be Investigated. Respiratory Medicine Case Reports. 18(1), 93-95. DOI: 10.1016/j.rmcr.2016.04.011.
[3] Dai, Y., Ma, Q.Y., X.H. Li, X.H., Zhang, X., Hu, F.P., Zhang, Y. & Xie, W.D. (2017). The research on characterization of crushability for foundry sand particles. Archives of Foundry Engineering. 17(4), 231-235. DOI: 10.1515/afe-2017-0161.
[4] Khan, M.M., Mahajani, S.M., Jadhav, G.N., Vishwakarma, R., Malgaonkar, V. & Mandre, S. (2021). Mechanical and thermal methods for reclamation of waste foundry sand. Journal of Environmental Management. 279(1), 111628. https://doi.org/10.1016/j.jenvman.2020.111628.
[5] Dańko, J.S., Dańko, R. & Holtzer, M. (2003). Reclamation of used sand in foundry production. Metalurgija. 42(3), 173-177. ISSN 0543-5846.
[6] Ghormley, S., Williams, R. & Dvorak, B. (2020). Foundry sand source reduction options: Life cycle assessment evaluation. Environments. 7(9), 66, 1-15. https://doi.org/10.3390/environments7090066.
[7] Das, S.K.. & Das, A. (2022). A critical state based viscoplastic model for crushable granular materials. Soils and Foundations. 62(1), 1-16. https://doi.org/10.1016/j.sandf.2021.101093.
[8] Kabasele, J.K. (2022). Investigation of South African Foundry Chromite sand Crushability, Masters thesis. Johannesburg: University of Johannesburg
[9] Kabasele, J.K. & Nyembwe, K.D. (2021). Assessment of local chromite sand as ‘green’ refractory raw materials for sand casting applications. South African Journal of Industrial Engineering. 32(2), 65-74. http://dx.doi.org/10.7166/32-3-2615.

Go to article

Authors and Affiliations

J.K. Kabasele
1
ORCID: ORCID
K.D. Nyembwe
1
ORCID: ORCID
H. Polzin
2

  1. Department of Metallurgy, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg, South Africa
  2. Peak Deutschland GmbH, Dresdner Straße 58, 01683 Nossen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The foundry industry is looking for solutions that improve the quality of the finished product and solutions that reduce the negative impact of the industry on the natural environment [26]. This process leads to work on the use of new or previously unused materials for binders. Organic and inorganic foundry binders are replaced by renewable materials of plant origin to meet the requirements of both the foundry customers and the environmental and health and safety regulations. The aim of this work was to identify the applicability of renewable and organic malted barley binder in moulding sand technology. The influence of the malt binder content on dry tensile strength, dry bending strength, dry permeability, dry wear resistance and flowability were evaluated. The results show that the malted barley binder can be self-contained material binding the high-silica sand grains. Selected mechanical properties of moulding sands were found to increase with an increase in binder content. It was observed that malted barley binder creates smooth bonding bridges between high-silica sand grains.
Go to article

Bibliography

[1] Lewandowski, J.L., (1997). Moulding materials. Kraków: Akapit Publisher. (in Polish).
[2] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metals Research. 28(3), 129-139. DOI: 10.1179/1743133614Y.0000000140.
[3] Ferreira, S. H. G. da, J. C. E., Kumar, V. & Garza-Reyes, J. A. (2020). Benchmarking of cleaner production in sand mould casting companies. Management of Environmental Quality: An International Journal. 31(5), 1407-1435. DOI: 10.1108/MEQ-12-2019-0272.
[4] Fayomi, O.S.I. (2016). Hybrid effect of selected local binders on the moulding properties of river niger silica sand for industrial application. Journal of Nanoscience with Advanced Technology. 1(4), 19-23. DOI: 10.24218/jnat.2016.19.
[5] Yaro, S.A. & Suleiman, M.U. (2006), Cassava/guinea corn starches and soybean oil as core binders in sand casting of aluminium silicon (Al-Si)lloy. Journal of Engineering and Technology. 1(1), 47-55.
[6] Grabowska, B. & others. (2018). Influence of carbon fibers addition on selected properties of microwave-cured moulding sand bonded with BioCo2 binder. Archives of Foundry Engineering. 18(3), 152-160. DOI: 10.24425/123618.
[7] Chowdhury, S.I. Rashid, H. & Mumtaz, G.R. (2016) Comparison and CFD verification of binder effects in sand mould casting of aluminum alloy. ANNALS of Faculty Engineering Hunedoara - International Journal of Engineering. 14(1), 143-146.
[8] Manley, D. (2000). 9 - Meals, grits, flours and starches (other than wheat). Technology of Biscuits, Crackers and Cookies (Third Edition). (104–111). Red. Woodhead Publishing.
[9] Yu, W., Quek, W., Li, C., Gilbert, R. & Fox, G. (2018) Effects of the starch molecular structures in barley malts and rice adjuncts on brewing performance. Fermentation. 4(4), 103-124. DOI: 10.3390/fermentation4040103.
[10] Fox, G.P. (2009). Chemical composition in barley grains and malt quality. Genetics and Improvement of Barley Malt Quality. (63-98). Zhang G. & C. Li, Red. Berlin, Heidelberg: Springer Berlin Heidelberg. [11] Pezarski, F., Izdebska-Szanda I., Smoluchowska, E., Świder, R. & Pysz, A. (2011). Application of moulding sands with geopolymer binder in the manufacture of castings from aluminium alloys. Prace Instytutu Odlewnictwa. 51(2), 23-34. (in Polish).
[12] Stachowicz, M. Granat, K. & Nowak, D. (2012). Bending strength measurement as a method of binder quality assessment on the example of water-glass containing moulding sands. Archives of Foundry Engineering. 12(1), 175-178. (in Polish).
[13] Stachowicz, M., Granat, K. & Nowak, D. (2010). Studies on the possibility of more effective use of water glass thanks to application of selected methods of hardening. Archives of Foundry Engineering. 10 (spec.2), 135-140.
[14] Szymański, A., (2007). Soil mechanics. Warszawa: Wydawnictwo SGGW. (in Polish).
[15] Ochulorl, E.F., Ugboaja, J.O. & Olowomeye, O.A. (2019). Performance of kaolin and cassava starch as replacements for bentonite in moulding sand used in thin wall ductile iron castings. Nigerian Journal of Technology. 38(4), 947-956. DOI: 10.4314/njt.v38i4.18.
[16] Popoola, A.P.I., Abdulwahab, M. & Fayomi, O.S.I. (2012). Synergetic performance of palm oil (Elaeis guineensis) and pine oil (Pinus sylvestris) as binders on foundry core strength. International Journal of the Physical Sciences. 7(24), 3062-3066. DOI: 10.5897/IJPS12.347.
[17] Atanda, P.O., Akinlosotu, O.C. & Oluwole, O.O. (2014). Effect of some polysaccharide starch extracts on binding characteristics of foundry moulding sand. International Journal of Scientific & Engineering Research. 5(3), 362-367.
[18] Pezarski, F., Maniowski, Z., Izdebska-Szanda, I. & Smoluchowska, E. (2006). Investigations of moulding and core sands made with a new geopolymer binder assigned for production of steel castings. Archives of Foundry. 6(20), 65-70. (in Polish).
[19] Pezarski, F., Smoluchowska, E. & Izdebska-Szanda, I. (2008). Application of geopolymer binder in manufacturing of casting from ferrous alloys. Prace Instytutu Odlewnictwa. 48(2), 19-34. (in Polish).
[20] Jaworski, J. (2006). Research of stability of preparation system of circulating moulding sands. Archives of Foundry Engineering. 6(18), 495-500. (in Polish).
[21] Michta-Stawiarska, T. (2000). The selected iron castings defects as the effect of the sandmix quality. Solidification of Metais and Alloys. 2(43), 345-347. (in Polish).
[22] Lewandowski, J.L. (1971). Moulding materials. Warszawa Kraków: Wydawnictwo Naukowe PWN. (in Polish).
[23] Bobrowski, A. (2018). The phenomenon of dehydroxylation of selected mineral materials from the aluminosilicates group as the determinant factor of the knock-out improvement of moulding and core sands with inorganic binder. Wydawnictwo Archives of Foundry Engineering, Komisja Odlewnictwa PAN Katowice. (in Polish).
[24] Paduchowicz, P., Stachowicz, M. & Granat, K. (2017). Effect of Microwave Heating on Moulding Sand Properties with Gypsum Binder. Archives of Foundry Engineering. 17(3), 97-102.
[25] Sakwa, W., Wachelko, T. (1981). Foundry materials for molds and foundry cores. Katowice: Śląsk Publisher. (in Polish).
[26] Zhoua, X. , Yang J. & Quc. G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology. 183. 407-411.
[27] Aramide, F. O., Aribo, S. & Folorunso, D.O. (2011). Optimizing the moulding properties of recycled ilaro silica sand. Leonardo Journal of Sciences. 19, 93-102.
[28] Jordan, G., Eulenkamp, C., Calzada, E., Schillinger, B., Hoelzel, M., Gigler, A., Stanjek, H. & Schmahl, W.W. (2013). Quantitative in situ study of the dehydration of bentonite-bonded molding sands. Clays and Clay Minerals. 61(2), 133-140.
[29] Blaszkowski, K. (1975), Mold and core technology. Bielsko-Biała: WSiP. Wydanie III. (in Polish).
Go to article

Authors and Affiliations

B. Samociuk
1
B. Gal
1
D. Nowak
1

  1. Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Recently, some major changes have occurred in the structure of the European foundry industry, such as a rapid development in the production of castings from compacted graphite iron and light alloys at the expense of limiting the production of steel castings. This created a significant gap in the production of heavy steel castings (exceeding the weight of 30 Mg) for the metallurgical, cement and energy industries. The problem is proper moulding technology for such heavy castings, whose solidification and cooling time may take even several days, exposing the moulding material to a long-term thermal and mechanical load. Owing to their technological properties, sands with organic binders (synthetic resins) are the compositions used most often in industrial practice. Their main advantages include high strength, good collapsibility and knocking out properties, as well as easy mechanical reclamation. The main disadvantage of these sands is their harmful effect on the environment, manifesting itself at various stages of the casting process, especially during mould pouring. This is why new solutions are sought for sands based on organic binders to ensure their high technological properties but at the same time less harmfulness for the environment. This paper discusses the possibility of reducing the harmful effect of sands with furfuryl binders owing to the use of resins with reduced content of free furfuryl alcohol and hardeners with reduced sulphur content. The use of alkyd binder as an alternative to furfuryl binder has also been proposed and possible application of phenol-formaldehyde resins was considered.

Go to article

Authors and Affiliations

K. Major-Gabryś
ORCID: ORCID
M. Hosadyna-Kondracka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the effect of heating of various prepared batch materials into semisolid state with subsequent solidification of the cast under pressure. The investigated material was a subeutectic aluminium alloy AlSi7Mg0.3. The heating temperature to the semisolid was chosen at 50% liquid phase. The used material was prepared in a variety of ways: heat treatment, inoculation and by squeeze casting. Also the influence of the initial state of material on inheritance of mechanical properties and microstructure was observed. The pressure was 100 MPa. Effect on the resulting casting structure, alpha phase distribution and eutectic silicon was observed. By using semisolid squeeze casting process the mechanical properties and microstructures of the casts has changed. The final microstructure of the casts is very similar to the microstructure that can be reached by technology of thixocasting. The mechanical properties by using semisolid squeeze casting has been increased except the heat treated material.

Go to article

Authors and Affiliations

D. Martinec
R. Pastirčák
ORCID: ORCID
E. Kantoríková
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The dimensional accuracy of a final casting of Inconel 738 LC alloy is affected by many aspects. One of them is the choice of method and time of cooling the wax model for precision investment casting. The main objective of this work was to study the initial deformation of the complex shape of a rotor blades casting. Various approaches have been tested for cooling a wax pattern. When wax models are air cooled and without clamping in the jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm) and most are in extreme positions of the model. When the blade is cooled in the fixing jig in a water environment, the resulting deviations compared to those of air cooling are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with the usage of wax models, which have smaller deviations from the ideal position. Another deformation occurs when the shell mould is produced around the wax pattern and further deformations emerge while cooling the blade casting. This paper demonstrates the first steps in describing the complex process of deformations occurring in Inconel alloy blades produced with investment casting technology by comparing results of thermal imagery, simulations in foundry simulation software ProCAST 2010, and measurements from a CNC scanning system using a Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems that deformations of the wax pattern and deformations of the castings do in some cases cancel each other by having opposite directions. Describing the whole process of deformations will help increase the precision of blade castings so that the models at the beginning and the blades in the end are the same.

Go to article

Authors and Affiliations

A. Herman
M. Česal
P. Mikeš
Download PDF Download RIS Download Bibtex

Abstract

The essence of ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and a watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. This paper focuses on the selection of moulding sands with hydrated sodium silicate for moulds used in the ablation casting. The research is based on the use of Cordis binder produced by the Hüttenes-Albertus Company. It is a new-generation inorganic binder based on hydrated sodium silicate. Its hardening takes place under the effect of high temperature. As part of the research, loose moulding mixtures based on the silica sand with different content of Cordis binder and special Anorgit additive were prepared. The reference material was sand mixture without the additive. The review of literature data and the results of own studies have shown that moulding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties to be used in the ablation casting process. Additionally, at the Foundry Research Institute in Krakow, preliminary semi-industrial tests were carried out on the use of Cordis sand technology in the manufacture of moulds for ablation casting. The possibility to use these sand mixtures has been confirmed in terms of both casting surface quality and sand reclamation.

Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
K. Major-Gabryś
J. Kamińska
A. Grabarczyk
M. Angrecki
Download PDF Download RIS Download Bibtex

Abstract

Silicon bronzes are characterised by good mechanical properties and by high corrosion and mechanical wear resistance. The process of sleeve casting by means of the centrifugal casting with the horizontal axis of the mould rotation was analysed. The assessment of the influence of modification and centrifugal casting parameters on the microstructure and mechanical properties of alloys was carried out in the hereby work. Zirconium was applied as a modifier. Speed of rotation of the mould was the variable parameter of the centrifugal casting. The investigation results were summarised on the basis of the microstructure analysis and mechanical properties determination: UTS, proof stress, A10 and BHN. The experiment aimed at finding the information in which way the modification together with changing the pouring parameters influence the mechanical properties of the CuSi3Zn3FeMn alloy.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
J. Kozana
M. Piękoś
M. Papaj
P. Papaj
M. Perek-Nowak
Download PDF Download RIS Download Bibtex

Abstract

Examples of cast grates whose construction was based on previously used "old" patterns of the technological equipment for heat treatment furnaces (TEq) are presented. Manufacturers of this type of castings have at their disposal numerous earlier designs of the applied TEq. Their adaptation for the needs of a new order, i.e. the creation of a new design or modification of the already existing one, significantly reduces both cost and time of the implementation. It also allows making new grate constructions of various shapes and sizes, reducing in this way the number of patterns stored by the manufacturer of castings. The examples of cast grates shown and discussed in this study document the variety of ways that can be used when making them from the already existing patterns or castings. The presented grates were made using master patterns, entire castings or their fragments, and modular segments.

Go to article

Authors and Affiliations

B. Piekarski
A. Drotlew

This page uses 'cookies'. Learn more