Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study shows the results of the investigation of the strength performance, and residual strength of a single component inorganic binder

system Cast Clean S27®. The study was conducted using three different foundry sand sources in South Africa. Sample A is an alluvial

coastal sample, sample B is an alluvial riverbed sample and Sample C is a blasted sample from a consolidated quartzite rock. The binder

was also cured using three different curing mechanisms. The aim of the investigation was to determine the variation of strength

performance and residual strength between the different South African sand sources based upon the physical and chemical properties of

the sand sources. The moulding sand was prepared using three possible curing mechanisms which are carbon dioxide curing, ester curing

and heat curing. The strength measurements were determined by bending strength. Sample A and sample C sand had good strength

development. Sample B sand had inferior strength development and excellent high temperature residual strength. The study showed that

the single component inorganic binders have good strength development and low residual strength. The silica sand properties have major

contributing factors on both strength development and residual strength. The degree of influence of silica sand properties on strength

performance and residual strength is dependent on the time of curing and method of curing.

Go to article

Authors and Affiliations

F.C. Banganayi
K. Nyembwe
H. Polzin
Download PDF Download RIS Download Bibtex

Abstract

One of the purposes of the application of chemically modified inorganic binders is to improve knocking out properties and the related reclamability with previously used in foundry inorganic binder (water glass), which allowing the use of ecological binders for casting nonferrous metals. Good knocking out properties of the sands is directly related to the waste sands reclamability, which is a necessary condition of effective waste management. Reclamation of moulding and core sands is a fundamental and effective way to manage waste on site at the foundry, in accordance with the Environmental Guidelines. Therefore, studies of reclamation of waste moulding and core sands with new types of inorganic binders (developed within the framework of the project) were carried out. These studies allowed to determine the degree of recovery of useful, material, what the reclaimed sand is, and the degree of its use in the production process. The article presents these results of investigation. They are a part of broader research programme executed under the project POIG.01.01.02-00- 015/09 "Advanced materials and technologies".

Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Baliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of an investigation of the gases emission of moulding sands with an inorganic (geopolymer) binder with a relaxation additive, whose main task is to reduce the final (residual) strength and improves knocking-out properties of moulding sand. The moulding sand without a relaxation additive was the reference point. The research was carried out using in accordance with the procedure developed at the Faculty of Foundry Engineering of AGH - University of Science and Technology, on the patented stand for determining gas emissions. Quantification of BTEX compounds was performed involving gas chromatography method (GC).The study showed that the introduction of relaxation additive has no negative impact on gas emissions - both in terms of the total amount of gases generated, as well as emissions of BTEX compounds. Among the BTEX compounds, only benzene is emitted from the tested moulding sands. Its emission is associated with the introduction a small amount of an organic hardener from the group of esters.

Go to article

Authors and Affiliations

A. Bobrowski
S. Żymankowska-Kumon
K. Kaczmarska
D. Drożyński
B. Grabowska
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the possibilities of using alkali silicate based inorganic binders for automotive industry aluminium castings production. In recent years, inorganic binders are coming back to the foreground and their manufacturers are developing new processes, which are starting to progressively supersede organic binder systems. Paper describes known knowledge about classic alkali silicate binders with focus on hardening processes and on improving their technological properties. Trends from the area of development and the use new alkali silicate based inorganic binders are also shortly described. As part of the experimental work, specific methods of producing samples were developed, with the help of which properties such as disintegration were subsequently evaluated by measuring abrasion and residual strengths. Characteristics such as residual compressive strength or shear strength at different thermal loads were also evaluated. When comparing the laboratory results with the results of de-coring in real conditions, a high degree of correlation was achieved, which makes it possible to determine the optimal recipe/procedure for the production of geometrically complex cores.
Go to article

Bibliography

[1] Jelínek, P. (1996). Foundry molding mixtures Part II, Binder systems of molding mixtures. Ostrava.
[2] Lewandowski, J.L. (1997) Plastics for casting molds. Kraków: WYD AKAPIT.
[3] Bolibruchova, D., Kuris, M., Matejka, M. & Kasinska, J. (2022). Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 alloy. Materials. 15(10). 3709, 1-20. DOI: 10.3390/ma15103709.
[4] Köhler, E., Klimesch, C., Bechtle, S. & Stanchev, S. (2010). Cylinder head production with gravity die casting. MTZ Worldwide. 71, 38-41. DOI: 10.1007/BF03227043. https://doi.org/10.1007/BF03227043.
[5] Polzin, H. (2014.) Inorganic Binders for mould and core production in the foundry. (1st. ed.) Berlin: Schiele und Schön.
[6] Antoš, P., Burian, A. (2002). Water glass - production, structure, properties and uses. Silchem
[7] Izdebska-Szanda, I., Palma, A., Angrecki, M. & Żmudzińska, M. (2013). Environmentally friendly mould technology. Archives of Foundry Engineering. 13(3), 37-42. DOI: 10.2478/afe-2013-0055.
[8] Stechman, M., Różycka, D. & Baliński, A. (2003). Modification of aqueous sodium silicate solutions with morphoactive agents. Polish Journal of Chemical Technology. 5(3), 47-50. ISSN (1509-8117).
[9] Jelínek, P. & Škuta, R. (2003). Modified sodium silicates – a new alternative for inorganic foundry binders. Materials Enginering. 10(3), 283.
[10] Mashifana, T. & Sithole, T. (2020). Recovery of silicon dioxide from waste foundry sand and alkaline activation of desilicated foundry sand. Journal of Sustainable Metallurgy. 6, 700-714. DOI: 10.1007/s40831-020-00303-5.
[11] Vasková, I. & Bobok, L. (2002). Some knowledge of the water glass modification by the phosphate compounds. Acta Metallurgica Slovaca. 8(2), 161-167.
[12] Major-Gabryś, K., Dobosz, St.M., Jelínek, P., Jakubski, J. & Beňo, J. (2014). The measurement of high-temperature expansion as the standard of estimation the knock-out properties of moulding sands with hydrated sodium silicate. Archives of Metallurgy and Materials. 59(2), 739-742. DOI: 10.2478/amm-2014-0123.
[13] Obzina, T., Merta, V., Folta, M., Bradáč, J., Beňo, J. Novohradská, N., et al. (2021). Technological and quality aspects of the use of innovative inorganic binders in the production of castings. Metals. 11(11), 1779, 1-13. DOI: 10.3390/met11111779.
[14] Izdebska-Szanda, I., Baliński, A., Angrecki, M. & Palma, A. (2014). The effect of nanostructure modification of the silicate binder on its binding characteristics and functional properties. Archives of Metallurgy and Materials. 59(3), 1033-1036. DOI: 10.2478/amm-2014-0173.
[15] Major-Gabryś, K., Dobosz, St.M., Jakubski, J. (2010). Self-hardened moulding sand with hydrated sodium silicate and liquid ester hardeners. In K. Świątkowski (Eds.), Polish Metallurgy in 2006-2010. (328-335). Krakow: Committee of Metallurgy of the Polish Academy of Science.
[16] Izdebska-Szanda, I. & Baliński, A. (2011). New generation of ecological silicate binders. Procedia Engineering. 10, 887-893. DOI: 10.1016/j.proeng.2011.04.146.
[17] Baliński, A. (2009). About structure of hydrated sodium silicate as a binder of moulding sands. Krakow: Foundry Research Institute.
[18] Izdebska-Szanda, I. (2012). Moulding sand with silicate binder characterized by beneficial technological and ecological properties. M.Sc. dissertation, Foundry Research Institute, Poland.
[19] Izdebska-Szanda, I., Stefański, Z., Pezraski, F. & Szolc, M. (2009). Effect of additives promoting the formation of lustrous carbon on the knocking out properties of foundry sands with new inorganic binders. Archives of Foundry Engineering. 9(1), 17 – 20.
[20] Izdebska-Szanda, I., Szanda, M. & Matuszewski, S. (2011). Technological and ecological studies of moulding sands with new inorganic binders for casting of non-ferrous metal alloys. Archives of Foundry Engineering. 11(1), 43-48. ISSN (1897-3310).
[21] Zaretskiy, L. (2016). Modified silicate binders new developments and applications. International Journal of Metalcasting. 10(1), 88-99. DOI: 10.1007/s40962-015-0005-3.
[22] Josan, A., Pinca‐Bretotean, C. & Ratiuc, S. (2021). Management of the regeneration process of the moulding mixtures in order to reduce the costs of the foundry type industrial enterprises. Materials Today: Proceedings. 45, 4161-4165. DOI: 10.1016/j.matpr.2020.12.034
[23] Davis, J.R. (1998). Metals Handbook. Desk Edition (2nd ed.) Boca Raton:CRC Press.
Go to article

Authors and Affiliations

M. Bruna
1
ORCID: ORCID
I. Vasková
2
ORCID: ORCID
M. Medňanský
1
ORCID: ORCID
P. Delimanová
2
ORCID: ORCID

  1. Faculty of Mechanical Engineering, Department of Technological Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
  2. Institute Of Metallurgy, Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The paper provides an overview of selected scientific articles presenting research carried out in recent years on methods for producing autoclaved aerated concrete. Traditional technologies are briefly presented, together with innovative solutions for the production of low-density and ultra-lowdensity materials. In addition to the presentation of the manufacturing methods themselves, the results of research into the properties of the autoclaved aerated concrete obtained and their dependence on the technology used are also presented. A subjective selection and review of articles covering research into the thermal conductivity of concrete, the technological factors influencing them and the ways in which they can be shaped was also carried out. A significant number of the cited articles do not function in the world scientific circulation due to the language barrier (they are mainly in Ukrainian). In the meantime, they contain interesting research results which can inspire further research into the issues discussed concerning the production technology and the thermal and strength properties of autoclaved aerated concrete, with particular emphasis on lightweight and ultra-lightweight concrete.
Go to article

Authors and Affiliations

Yaroslav Yakymechko
1
ORCID: ORCID
Roman Jaskulski
2
ORCID: ORCID
Maciej Banach
2
ORCID: ORCID
Piotr Perłowski
2
ORCID: ORCID

  1. Lviv Polytechnic National University, Institute of Chemistry and Chemical Technologies, Bandera str. 13, Lviv, Ukraine
  2. Warsaw University of Technology, Faculty of Civil Engineering Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research which is part of studies carried out under the project POIG.01.01.02-00-015/09 "Advanced Materials and Technologies", one of the aims of which is to introduce new, environment-friendly, inorganic binders to the production of castings from non-ferrous metals. The paper presents the results of research on the management of waste moulding sands prepared according to the new technology, including their multiple reclamation and management of post-reclamation waste. Studies of multiple reclamation are a continuation of the preliminary research described earlier. The programme of the studies described in this paper also included validation of the results under industrial conditions.
Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Palma
Download PDF Download RIS Download Bibtex

Abstract

One of the factors that contribute to the development of foundry moulding technology is environmental protection. The related challenges are effectively satisfied by a new inorganic binder that has been designed for castings made of non-ferrous metal alloys. This article presents in a concise way the test results, showing the ecological character of the new binder at the stage of making moulds, pouring them with metal and cooling of castings, indicating the possibilities for an economic re-use of waste materials formed during practical application of this technology. The results were compared with the results obtained on the sands with organic binders. Studies were carried out under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies."
Go to article

Authors and Affiliations

I. Izdebska-Szanda
M. Angrecki
A. Palma
M. Żmudzińska
Download PDF Download RIS Download Bibtex

Abstract

Mechanization of the process of core making with the use of inorganic and organic binders is based, almost solely, on core blowing machines. Presently the core blowing machines are equipped with tools and devices that allow for application of different technologies of core making. Cold-box, hot-box and warm-air technologies require that core blowing machines shall be additionally equipped with either core-box pre-heating system or gas purging and neutralization system, or hot air purging systems. Considering the possibility of using varied, the most advantageous technologies of core making, the production of universal core blowing machines equipped with replaceable devices has been undertaken in Poland. The universal core blowing systems allow for mechanization of core making process also with the use of sand, bonded by modern, eco-friendly binder systems. The paper presents selected results-based evaluation of core blowing process showing the scope of conducted design and implementation works.
Go to article

Authors and Affiliations

A. Fedoryszyn
R. Dańko
J. Dańko
M. Asłanowicz
T. Fulko
A. Ościłowski
Download PDF Download RIS Download Bibtex

Abstract

The development of economy and industry introducing new technologies and materials often means the increased threat of occurrence of factors harmful to humans and environment. Workers employed in foundries as mould pourers are the group of high professional risk. Foundry moulding sands when poured with liquid metal are a source of the emission of harmful, toxic and carcinogenic (benzene, PAHs) compounds. The paper presents the results of studies on the concentration of chemical compounds emitted in the process of casting aluminium alloy and brass using moulding sands with the new inorganic binders. The specific values of the exposure indices were compared with the limit values. This enabled an assessment of the impact of moulding sands on work environment. The obtained results were compared with the values of contaminants emitted when pouring foundry moulds made from furan sands and bentonite sands with an addition of coal dust. Studies were carried out under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies."
Go to article

Authors and Affiliations

I. Szanda
M. Żmudzińska
J. Faber
K. Perszewska
Download PDF Download RIS Download Bibtex

Abstract

The possibilities of using an inorganic phosphate binder for the ablation casting technology are discussed in this paper. This kind of binder was selected for the process due to its inorganic character and water-solubility. Test castings were made in the sand mixture containing this binder. Each time during the pouring liquid alloy into the molds and solidification process of castings, the temperature in the mold was examined. Then the properties of the obtained castings were compared to the properties of the castings solidifying at ambient temperature in similar sand and metal molds. Post-process materials were also examined - quartz matrix and water. It has been demonstrated that ablation casting technology promotes refining of the microstructure, and thus upgrades the mechanical properties of castings (Rm was raised about approx. 20%). Properties of these castings are comparable to the castings poured in metal moulds. However, the post-process water does not meet the requirements of ecology, which significantly reduces the possibility of its cheap disposal.
Go to article

Bibliography


[1] Puzio, S., Kamińska, J., Angrecki, M. & Major-Gabryś, K. (2020). The Influence of Inorganic Binder Type on Properties of Self-Hardening Moulding Sands Intended for the Ablation Casting Process. Journal of Applied Materials Engineering. 60(4), 99-108.
[2] United States Patent No. US 7,159,642 B2.
[3] Dudek, P., Fajkiel, A., Reguła, T. & Bochenek, J. (2014). Research on the ablation casting technology of aluminum alloys. Prace Instytutu Odlewnictwa, LIV(2). (in Polish).
[4] Ananthanarayanan, L., Samuel, F. & Gruzelski, J. (1992). Thermal analysis studies of the effect of cooling rate on the microstructure of 319 aluminium alloy. AFS Trans., 100, 383-391.
[5] Thompson, S., Cockcroft, S. & Wells, M. (2004). Advanced high metals casting development solidification of aluminium alloy A356. Materials Science and Technology, 20, 194-200.
[6] Jordon, L.W.J.B. (2011). Monotonic and cyclic characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSE. Proceeding ASME.
[7] Jorstad, J. & Rasmussen, W. (1997). Aluminium science and technology. American Foundry Society. (368), 204-205.
[8] Weiss, D., Grassi, J., Schultz, B. & Rohagti, P. (2011). Ablation of hybrid metal matrix composites. Transactions of American Foundry Society. (119), 35-42.
[9] Taghipourian, M., Mohammadalihab, M., Boutorabic, S. & Mirdamadic, S. (2016). The effect of waterjet beginning time on the microstructure and mechanical properties of A356 aluminium alloy during the ablation casting process. Journal of Materials Processing Technology. 238, 89-95. DOI: https://doi.org/10.1016/j.jmatprotec.2016.05.004
[10] Rooy, E., Van Linden, J. (2015). ASM Metals Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. 2, 3330-3345.
[11] Bohlooli, V., Shabani Mahalli, M. & Boutorabi, S. (2013). Effect of ablation casting on microstructure and casting properties of A356 aluminium casting alloy. Acta Metallurgica Sininca (English letters). 26(1), 85-91.
[12] Grassi, J., Campbell, J. (2010). Ablation casting. A Technical paper, pp. 1-9.
[13] Jordon, L. (2011). Characterization of five different casting process on a common magnesium alloy. Inte Natl, Manuf. Sci. Eng. Conf. MSEC. Proceeding ASME.
[14] Wang, L., Lett, R. (2011). Microstructure characterization of magnesium control ARM castings. Shape Casting, pp. 215-222.
[15] Yadav , S., Gupta, N. (2017). Ablation casting process – an emerging process for non ferrous alloys. International Journal of Engineering, Technology, Science and Research. 4(4).
[16] Acura. (2015). Ablation Casting. Retrieved from: https://www.acura.com/performance/modals/ablation-casting
[17] Honda. (2015). New technical details next generation nsx revealed at SAE 2015 World Congress. Retrieved from: https://honda.did.pl/pl/samochody/nasza-firma/aktualnosci/450-nowe-szczegoly-techniczne-dot-kolejnej-generacji-modelu-nsx-ujawnione-na-sae-2015-world-congr.html
[18] Technology, F.M. (2015). Ablation-cast parts debut on new acura NSX. Retrieved from: https://www.foundrymag.com/meltpour/ablation-cast-parts-debut-new-acura-nsx
[19] Holtzer, M. (2002). Development directions of molding and core sand with inorganic binders in terms of reducing the negative impact on the environment. Archives of Foundry. 2(3), 50-56. (in Polish).
[20] Major-Gabryś K. (2016). Environmentally friendly foundry molding and core sand. Kraków: Archives of Foundry Engineering. (in Polish)
Go to article

Authors and Affiliations

S. Puzio
1
ORCID: ORCID
J. Kamińska
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Angrecki
1
ORCID: ORCID

  1. ŁUKASIEWICZ Research Network - Foundry Research Institute, Zakopianska 73, 30-418 Cracow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Mickiewicza 30, 30-059 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulding sands based on inorganic binders hardened in a microwave chamber in the technology of ablation casting of aluminium alloys. The essence of the ablation casting technology consists in this that a mould with a water-soluble binder is continuously washed with water immediately after being poured with liquid alloy until its complete erosion takes place. The application of an environmentally friendly inorganic binder improves the ecology of the whole process, while microwave hardening of moulding sands allows moulds to be made from the sand mixture containing only a small amount of binder.

The studies described in this article included microwave-hardened sand mixtures containing the addition of selected inorganic binders available on the market. The strength of the sands with selected binders added in an amount of 1.0; 1.5 and 2.0 parts by mass was tested. As a next step, the sand mixtures with the strength optimal for ablation casting technology, i.e. about 1.5 MPa, were selected and tested for the gas forming tendency. In the four selected sand mixtures, changes occurring in the samples during heating were traced. Tests also included mould response to the destructive effect of ablation medium, which consisted in the measurement of time necessary for moulds to disintegrate while washed with water. Tests have shown the possibility of using environmentally friendly, microwave-hardened moulding sands in ablation casting of aluminium alloys.

Go to article

Authors and Affiliations

S. Puzio
ORCID: ORCID
J. Kamińska
ORCID: ORCID
M. Angrecki
ORCID: ORCID
K. Major-Gabryś
ORCID: ORCID

This page uses 'cookies'. Learn more