Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an off-line application that determines the maximum accuracy of the reference points for the given dynamics parameters of a CNC machine. These parameters are maximum speed, acceleration, and JERK. The JERK parameter determines the rate of change of acceleration. These parameters are defined for each working axis of the machine. The main achievement of the algorithm proposed in the article is the determination of the smallest error specified for each reference point resulting from the implemented G-code for the considered dynamic parameters of the CNC machine. The solutions to this problem in industry consider the improvement in the accuracy of hitting the reference points, but they do not provide information on whether the obtained solution is optimal for such parameters of the machine dynamics. The algorithm makes the accuracy dependent on the adopted dynamic parameters of the machine and the parameters of the PLC controller used in the CNC machine.
Go to article

Authors and Affiliations

Bogdan Kwiatkowski
1
ORCID: ORCID
Tadeusz Kwater
2
ORCID: ORCID
Damian Mazur
1
ORCID: ORCID
Jacek Bartman
3
ORCID: ORCID

  1. Department of Electrical and Computer Engineering Fundamentals, Rzeszow University of Technology, ul. W. Pola 2, 35-959 Rzeszow, Poland
  2. Institute of Technical Engineering, State University of Technology and Economics in Jaroslaw, ul. Czarnieckiego 16, 37-500 Jaroslaw, Poland
  3. University of Rzeszow, ul. Rejtana 16C, Rzeszow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, we present results for a new dissipative jerk chaotic system with three quadratic terms in its dynamics.We describe the bifurcation analysis for the new jerk system and also show that the proposed system exhibits multi-stability. Next, we describe a backstepping control-based synchronization design for a pair of new jerk chaotic systems. MATLAB simulations are put forth to exhibit the various findings in this work. Furthermore, we exhibit a circuit simulation for the new jerk system using MultiSim.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
1
Khaled Benkouider
2
Aceng Sambas
3

  1. School of Electrical and Computing, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600092, Tamil Nadu, India
  2. Non Destructive Testing Laboratory, Automatic Department, Jijel University, BP 98, 18000, Jijel, Algeria
  3. Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tasikmalaya 46196, West Java, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

This paper constructs a six-term new simple 3D jerk system modeled by chaotic model memory oscillators with four parameters that control the behavior. The suitable choice of one of these parameters helps the system describe behavior and attractors. This means that the choice is a parameter of the associated behavior (dissipative or conservative) and attractors (self-excited or hidden). Some features of the equilibrium are observed that are related to the dependence on these parameters, such as saddle-foci, non-hyperbolic, and node-foci. This system is rich in dynamic features including chaotic, quasi-periodic (2-torus), and periodic via the utilization of bifurcation diagrams and Lyapunov spectrum. Finally, a new image encryption algorithm is introduced that utilizes the jerk system. The algorithm is assessed through statistical performance analysis, according to the results of the experiments and security tests, it has been verified that the suggested image encryption algorithm is highly secure and could be a viable option for real-world applications.
Go to article

Authors and Affiliations

Saad Fawzi Al-Azzawi
1
ORCID: ORCID

  1. Department of Mathematics, Collegeof Computer Science and Mathematics, University of Mosul, Mosul, Iraq
Download PDF Download RIS Download Bibtex

Abstract

In this work, a new 3-D modified WINDMI chaotic jerk system with exponential and sinusoidal nonlinearities is presented and its dynamical behaviours and properties are investigated. Firstly, some properties of the system are studied such as equilibrium points and their stability, Lyapunov exponents and Kaplan-Yorke dimension. Also, we study the new jerk system dynamics using numerical simulations and analyses, including phase portraits, Lyapunouv exponent spectrum, bifurcation diagram and PoincarΓ© map, 0-1 test. Next, we exhibit that the new 3-D chaotic modified WINDMI jerk system has multistability with coexisting chaotic attractors. Moreover, we design an electronic circuit using MultiSim 14.1 for real implementation of the modified WINDMI chaotic jerk system. Finally, we design an active synchronization scheme for the complete synchronization of the modified WINDMI chaotic jerk systems via backstepping control.
Go to article

Authors and Affiliations

Mohamad Afendee Mohamed
1
Sundarapandian Vaidyanathan
2 3
Fareh Hannachi
4
Aceng Sambas
1
P. Darwin
5

  1. Faculty of Information and Computing,Universiti Sultan Zainal Abidin, Terengganu, Malaysia
  2. Centre for ControlSystems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600062 Tamil Nadu, India
  3. Faculty of Information and Computing, Universiti Sultan Zainal Abidin Terengganu, Malaysia
  4. Larbi Tebessi University – Tebessi routede constantine, 12022, Tebessa, Algeria
  5. Department of Computer Science and EngineeringRajalakshmi Institute of Technology, Kuthambakkam, Chennai-600 124, Tamil Nadu, India

This page uses 'cookies'. Learn more