Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nutrient deficiency (ND) stands as a prominent environmental factor that significantly impacts global plant growth and productivity. While numerous methods have been employed for detecting nutrient deficiencies in plants, many of them are invasive, time-consuming, and costly. In contrast, chlorophyll fluorescence (ChlF) signals have emerged as a non-destructive tool for the identification of specific nutrient deficiencies, such as nitrogen (N), phosphorus (P), and potassium (K), across various plant species. In this pioneering study, ChlF measurements were employed for the first time to detect a combination of nutrient deficiencies, including deficiencies in nitrogen and phosphorus (–NP), nitrogen and potassium (–NK), potassium and phosphorus (–KP), and a complete NPK deficiency (–NPK). The experiment was conducted using wheat (Triticum aestivum) and maize ( Zea mays) plants, which were grown under controlled laboratory conditions. An optimal hydroponic system was established to facilitate eight experimental conditions, namely: control, –N, –P, –K, –NP, –NK, –KP, and –NPK. Measurements were systematically collected at two-day intervals over a span of 24 days. Our findings demonstrate that chlorophyll fluorescence signals can enable the differentiation of various nutrient deficiencies even prior to the onset of observable symptoms. Furthermore, the examination of chlorophyll fluorescence parameters enables us not only to identify a singular macronutrient deficiency but also to detect multiple macronutrient deficiencies concurrently in a plant.
Go to article

Authors and Affiliations

Zuzanna Malwina Jaszczuk
1
ORCID: ORCID
Wojciech Bąba
2
ORCID: ORCID

  1. Warsaw University of Life Sciences SGGW, Faculty of Agriculture and Ecology, Warsaw, Poland
  2. Institute of Technology and Life Sciences – National Research Institute, Falenty, 3 Hrabska Ave, 05-090, Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Drought significantly impacts the growth and yield of forage grasses, particularly its effect on Dactylis glomerata photosynthetic apparatus during the initial phase of development remains largely unknown. This study investigated the effects of drought on physiological parameters of various D. glomerata varieties. The seedlings obtained after seed germination under optimal and simulated drought conditions by PEG 6000 (three variants) were planted in small pots filled with garden substrate. Over a span of 42 days, the plants were initially kept well-watered (70% capillary water capacity, CWC), after which half of the seedlings from each variant were subjected to drought. This drought stress was applied during the tillering phase for 12 days. Subsequently, the plants were rehydrated (at 70% CWC) and allowed to recover for 14 days. Throughout both drought and recovery periods, measurements were taken. Leaf chlorophyll fluorescence parameters were assessed, and the JIP-test analysis was utilised to provide detailed insights into the functionality of D. glomerata photosynthetic apparatus under drought stress and post-recovery conditions. Several parameters were identified as indicative of the plants’ sensitivity to drought, such as performance indices PI ABS and PI tot, along with quantum yield parameters Ψ E0, φ E0, and φ P0. The results highlighted that var. Minora and Tukan exhibited greater tolerance to water deficit when compared to the other varieties studied. They showed a large increases in PIABS and PItot values after drought stress as well as after the re-watering (recovery period) compared to control plants. This suggests their potential for better adaptation to drought conditions.
Go to article

Authors and Affiliations

Barbara Borawska-Jarmułowicz
1
ORCID: ORCID
Grażyna Mastalerczuk
1
ORCID: ORCID
Piotr Dąbrowski
2
ORCID: ORCID
Żaneta Tuchowska
1
ORCID: ORCID
Hazem Kalaji
3
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Nowoursynowska St, 159, 02-776 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Nowoursynowska St, 159, 02-776 Warsaw, Poland
  3. Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Ave, 3, 05-090 Raszyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

Abiotic stressors contribute to growth restriction and developmental disorders in plants. Early detection of the first signs of changes in plant functioning is very important. The objective of this study was to identify chlorophyll fluorescence parameters that change under phosphorus deficiency stress in cucumber. In this work, a trail to study the early changes caused by phosphorus deficiency in cucumber plants by analysing their photosynthetic performance is presented. Chlorophyll- a fluorescence (ChF) parameters were measured every 7 days for a period of 28 days. Measurements were made separately on young and old leaves and on cucumber fruit. Parameters that decreased during the stress were: p2G, PI abs, PI total, REo/CS o, and TRo/CSo. P deficiency decreased total electron carriers per RC ( ECo/RC), yields ( TRo/ABS ( Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS and REo/ABS), fluxes ( REo/RC and REo/CSo) and fractional reduction of PSI end electron acceptors, and damaged all photochemical and non-photochemical redox reactions. Principal component analysis revealed a group of ChF parameters that may indicate early phosphorus deficiency in cucumber plants. Our results are used in the discovery of sensitive bioindicators of phosphorus deficiency in cucumber plants. Most JIP test parameters are linked to mathematical equations, so we recommend using of advanced statistical tools, such as principal component analysis, which should be considered very useful for stress identification. It has also been shown to be more effective in multivariate methods compared to univariate statistical methods was demonstrated.
Go to article

Authors and Affiliations

Leszek Sieczko
1
ORCID: ORCID
Piotr Dąbrowski
2
ORCID: ORCID
Katarzyna Kowalczyk
3
ORCID: ORCID
Janina Gajc-Wolska
3
ORCID: ORCID
Wojciech Borucki
4
ORCID: ORCID
Monika Janaszek-Mańkowska
5
ORCID: ORCID
Waldemar Kowalczyk
6
ORCID: ORCID
Domenica Farci
7
Hazem M. Kalaji
7
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Department of Biometry, Institute of Agriculture, 166 Nowoursynowska St., 02-787 Warsaw, Poland
  2. Warsaw University of Life Sciences – SGGW, Department of Environmental Management, Institute of Environmental Engineering, Poland
  3. Warsaw University of Life Sciences – SGGW, Department of Vegetable and Medicinal Plants, Institute of Horticultural Sciences, Poland
  4. Warsaw University of Life Sciences – SGGW, Department of Botany, Institute of Biology, Poland
  5. Warsaw University of Life – SGGW, Department of Fundamentals of Engineering and Power Engineering, Institute of Mechanical Engineering, Poland
  6. The National Institute of Horticultural Research, Skierniewice, Poland
  7. Warsaw University of Life Sciences – SGGW, Department of Plant Physiology, Institute of Biology, Poland

This page uses 'cookies'. Learn more